1,140,360 research outputs found

    Crack-Like Processes Governing the Onset of Frictional Slip

    Full text link
    We perform real-time measurements of the net contact area between two blocks of like material at the onset of frictional slip. We show that the process of interface detachment, which immediately precedes the inception of frictional sliding, is governed by three different types of detachment fronts. These crack-like detachment fronts differ by both their propagation velocities and by the amount of net contact surface reduction caused by their passage. The most rapid fronts propagate at intersonic velocities but generate a negligible reduction in contact area across the interface. Sub-Rayleigh fronts are crack-like modes which propagate at velocities up to the Rayleigh wave speed, VR, and give rise to an approximate 10% reduction in net contact area. The most efficient contact area reduction (~20%) is precipitated by the passage of slow detachment fronts. These fronts propagate at anomalously slow velocities, which are over an order of magnitude lower than VR yet orders of magnitude higher than other characteristic velocity scales such as either slip or loading velocities. Slow fronts are generated, in conjunction with intersonic fronts, by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the interface occurs until either of the slower two fronts traverses the entire interface, and motion at the leading edge of the interface is initiated. Slip at the trailing edge of the interface accompanies the motion of both the slow and sub-Rayleigh fronts. We might expect these modes to be important in both fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur

    Covalently bonded interfaces for polymer/graphene composites

    Get PDF
    The interface is well known for taking a critical role in the determination of the functional and mechanical properties of polymer composites. Previous interface research has focused on utilising reduced graphene oxide that is limited by a low structural integrity, which means a high fraction is needed to produce electrically conductive composites. By using 4,40-diaminophenylsulfone, we in this study chemically modified high-structural integrity graphene platelets (GnPs) of 2–4 nm in thickness, covalently bonded GnPs with an epoxy matrix, and investigated the morphology and functional and mechanical performance of these composites. This covalently bonded interface prevented GnPs stacking in the matrix. In comparison with unmodified composites showing no reduction in electrical volume resistivity, the interface-modified composite at 0.489 vol% GnPs demonstrates an eight-order reduction in the resistivity, a 47.7% further improvement in modulus and 84.6% in fracture energy release rate. Comparison of GnPs with clay and multi-walled carbon nanotubes shows that our GnPs are more advantageous in terms of performance and cost. This study provides a novel method for developing interface-tuned polymer/graphene composites

    Oxygen reduction at the silver/hydroxide-exchange membrane interface

    No full text
    A solid-state cell is used to study the electrocatalysis of oxygen reduction at the silver/hydroxide-exchange membrane interface. The catalyst/membrane interface exhibits improved performance in comparison to a catalyst/aqueous sodium hydroxide interface. Surprisingly, the half-wave potential for oxygen reduction is shown to shift 185 mV higher at the silver/hydroxide-exchange membrane interface than for the silver/aqueous hydroxide solution interface, and the exchange current density is significantly higher at 1.02 × 10−6 A m−2. On a cost per performance basis, silver electrocatalysts in a hydroxide-exchange membrane fuel cell may provide better performance than platinum in a proton-exchange membrane fuel cell. Keywords: Oxygen reduction reaction, Electrocatalyst, Alkaline membrane, Solid-state cell, Silve

    Effects of Interface Roughness Scattering on Radio Frequency Performance of Silicon Nanowire Transistors

    Get PDF
    The effects of an atomistic interface roughness in n-type silicon nanowire transistors (SiNWT) on the radio frequency performance are analyzed. Interface roughness scattering (IRS) is statistically investigated through a three dimensional full-band quantum transport simulation based on the sp3d5s?* tight-binding model. As the diameter of the SiNWT is scaled down below 3 nm, IRS causes a significant reduction of the cut-off frequency. The fluctuations of the conduction band edge due to the rough surface lead to a reflection of electrons through mode-mismatch. This effect reduces the velocity of electrons and hence the transconductance considerably causing a cut-off frequency reduction

    Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion

    Get PDF
    We present the application of a novel reduction technique for one-loop scattering amplitudes based on the combination of the integrand reduction and Laurent expansion. We describe the general features of its implementation in the computer code NINJA, and its interface to GoSam. We apply the new reduction to a series of selected processes involving massive particles, from six to eight legs.Comment: v3: 39 pages, minor typos and one benchmark point correcte

    Current distribution inside Py/Cu lateral spin-valve device

    Full text link
    We have investigated experimentally the non-local voltage signal (NLVS) in the lateral permalloy (Py)/Cu/Py spin valve devices with different width of Cu stripes. We found that NLVS strongly depends on the distribution of the spin-polarized current inside Cu strip in the vicinity of the Py-detector. To explain these data we have developed a diffusion model describing spatial (3D) distribution of the spin-polarized current in the device. The results of our calculations show that NLVS is decreased by factor of 10 due to spin flip-scattering occurring at Py/Cu interface. The interface resistivity on Py/Cu interface is also present, but its contribution to reduction of NLVS is minor. We also found that most of the spin-polarized current is injected within the region 30 nm from Py-injector/Cu interface. In the area at Py-detector/Cu interface, the spin-polarized current is found to flow mainly close on the injector side, with 1/e exponential decay in the magnitude within the distance 80 nm.Comment: 10 pages, 14 figure

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page
    corecore