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The effects of an atomistic interface roughness in n-type silicon nanowire transistors

(SiNWT) on the radio frequency performance are analyzed. Interface roughness

scattering (IRS) is statistically investigated through a three dimensional full–band

quantum transport simulation based on the sp3d5s∗ tight–binding model. As the

diameter of the SiNWT is scaled down below 3 nm, IRS causes a significant reduction

of the cut-off frequency. The fluctuations of the conduction band edge due to the

rough surface lead to a reflection of electrons through mode-mismatch. This effect

reduces the velocity of electrons and hence the transconductance considerably causing

a cut-off frequency reduction.
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Since the lengths of silicon (Si) metal-oxide-semiconductor field effect transistor (MOS-

FET) have been scaled down to the sub-100 nm regime, the cut-off frequency has increased

significantly to reach hundreds of gigahertz (GHz)1–3. Even though the cut-off frequency

is not the only important parameter in radio frequency (RF) MOSFETs, a high cut-off

frequency certainly represents a good criterion for Si MOSFETs to catch up with III-V

transistors if other shortcomings are overcome. Power losses due to a long skin depth of

the Si substrate, a poor noise figure and a high gate resistance4 are the examples of such

obstacles. Recently there have been tremendous efforts to improve the RF performance of

the Si MOSFET and it is becoming competitive to III-V high electron mobility transistor

(HEMT)/heterojunction bipolar transistor (HBT) or silicon germanium (SiGe) HBT2,3,5.

Silicon-on-insulator (SOI) multi-gate (MG) structures also have been found to be capa-

ble of achieving the cut-off frequency predicted by the international technology roadmap

for semiconductors (ITRS)6 for RF applications while reducing substrate losses and noise

figures7. Gate-all-around (GAA) siicon nanowire transistors (SiNWTs) have attracted at-

tention since it was found that their cut-off frequency can be much larger than that of planar

Si MOSFET8.

Traditionally, interface roughness scattering (IRS) has been considered as one of the

most important scattering mechanisms. At a high effective electric field, IRS dominates

FIG. 1. The simulated silicon nanowire with rough surface in the channel: the root-mean-square

roughness height ∆rms and the correlation length Lm are adopted from Ref. 9. The crystal ori-

entation 〈110〉 is selected for the electron transport direction. The source/drain doping density

Ns/Nd is set to 5× 1020cm−3. The diameter of the nanowire dSi varies from 2, 2.5, 3 to 4 nm. The

length of the source/drain extension region Ls/Ld, the gate length Lg, and the oxide thickness tox

are shown in the figure. The channel of the nanowire is undoped.
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FIG. 2. (a) The cut-off frequency (fT), (b) the transconductance (gm,on), (c) the total gate capac-

itance Cg,tot vs diameter dSi at the on-state with the gate bias Vgs ∼ Vth + 0.4V with the oxide

capacitance Cox = 2πεox/ ln [2(tox + dSi/2)/dSi] where εox is the dielectric constant of the oxide,

and (d) the transconductance vs gate overdrive for 100 rough nanowire samples (errorbar: standard

deviation). All the values except fT are normalized with the perimeter of the NW.

the universal mobility trend10. In SiNWTs, IRS is still an important scattering mechanism

reducing the on-current and the mobility significantly from the ballistic values11.

This paper focuses on the effects of interface roughness scattering on the RF performance

of SiNWTs, especially on the cut-off frequency (fT ). For that purpose, a three dimensional

full-band quantum transport simulator based on the sp3d5s∗ tight-binding (TB) model12,13

is used. As the maximum oscillation frequency (fmax) – another important figure of merit

of the RF MOSFETs is directly related to the cut-off frequency8, the effects of IRS on the

theoretical limit of the SiNWT’s RF performance can be estimated through this study.

The structure of the SiNWT studied in this paper is depicted in Fig. 1 where the oxide

layer is described in the cross-sectional view. The model of the interface roughness in the

SiNWT used in the simulation is described in Ref. 11 where the influence of the interface

roughness scattering on the direct-current (DC) characteristics of SiNWTs is presented. The

silicon dioxide (SiO2) layer is included in the transport calculation11 to accurately model

the wavefunction penetration into the oxide layer.

The cut-off frequency fT is related to the transconductance gm,on and the total gate
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FIG. 3. The density of states D(x,E) in a logarithmic scale for (a) a smooth NW or (b) a rough

NW resolved in the transport axis x and the energy E near the on-state with Vgs ∼ Vth + 0.4V .

The channel of the NWFET starts from x = 10 nm and extends to x = 25 nm.

capacitance Cg,tot through the relationship

fT =
gm,on

2πCg,tot
(1)

where gm,on and Cg,tot are calculated through the following expressions at the on-state defined

by the gate voltage Vgs at Vth + 2/3Vdd
14:

gm,on =
∂Ids
∂Vgs

∣∣∣∣
Vgs=Vth+2/3Vdd,Vds=Vdd

(2)

Cg,tot = q
∂N1D

∂Vgs

∣∣∣∣
Vgs=Vth+2/3Vdd,Vds=Vdd

(3)

where Vth is the threshold voltage, Vdd the supply voltage and N1D the total electron density

under the gate divided by the gate length. The threshold voltage Vth is determined using a

critical current Ic = dSi × 10−7(A).

The simulated cut-off frequency of a smooth nanowire (NW) is shown in Fig. 2(a). The

results obtained here are similar to the data calculated in Ref. 8. The cut-off frequency

increases as the nanowire diameter decreases. This is to first order a consequence of the

improvement of the injection velocity in a 〈110〉 silicon nanowire (SiNW) with smaller

diameter15.

As shown in Fig. 2(b), the transconductance gm,on is reduced significantly by the IRS

while Cg,tot is not affected much (Fig. 2(c)). The reduction of gm,on is due to reflections

caused by the rough interface. A small dip in gm marked by an arrow in Fig. 2(d) is an

indication that the second subband starts to carry the current16. In rough NWs, this dip is

smoothed out due to subband mixing.
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FIG. 4. (a) The average electron velocity at the on-state for NWs with a different diameter and

(b) the electron velocity along the channel at the on-state for rough NWs with diameter 2 nm

(errorbar: standard deviation).

Mismatches of the subbands throughout the channel of the rough nanowire also can be

observed in Fig. 3(b). This causes reflections of electrons causing reduction of the electron

velocity which, in turn, reduces the transconductance. Fig. 4(b) shows the electron velocity

throughout the smooth NW and the rough NWs with the diameter 2nm. The electron

velocity is significantly reduced by interface roughness scattering.

One thing noticeable in Fig. 4(b) is that the IRS causes a reduction of the electron velocity

at the beginning of the channel, but not much at the end of the channel. Electrons gain a

relatively large kinetic energy due to a large electric field at the end of the channel. As a

result, the fluctuation of the conduction band edge at the end of the channel does not affect

the electron velocity significantly.

The cut-off frequency relationship (Eq. 1) can also be expressed as

fT =
von
2πLg

. (4)

Therefore, the average electron velocity von can be calculated from the cut-off frequency. The

transit time under the gate τT is determined from von/Lg, such that the average velocity is

an effective velocity with which electrons flow in the channel when a small signal is applied

to the gate. As shown in Fig. 4(a), it turns out that von is higher than the ballistic injection

velocity (∼ 1.5 × 107cm/s from Ref. 17) because electron velocity is not saturated in the

beginning of the channel as in a long channel transistors. It can be observed that the average

electron velocity von is close to the velocity in the middle of the channel.
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FIG. 5. The electron density from source to drain for (top) the smooth NW and (bottom) the

rough NW (the same sample selected for Fig. 3) at the on-state with Vgs ∼ Vth + 0.4V .

The total gate capacitance is also an important parameter in the SiNWT. Experimentally

it is found that the total gate capacitance is reduced from the oxide capacitance due to

volume inversion of carriers in a nanowire18. In the simulated NW, the total gate capacitance

is found to be much smaller than the oxide capacitance as shown in Fig. 2(c).

Fig. 5 shows the electron density along the NW where it can be observed that the electron

density is fluctuating throughout the channel as compared to the smooth NW. Interface

roughness causes mode mixing and additional reflections in the current. It does, however,

not modify the total density of states (DOS), and therefore the capacitance of the nanowire.

Therefore, the total gate capacitance is relatively unaffected by rough interfaces.

In conclusion, the cut-off frequency of SiNWTs is statistically studied through quantum

transport simulation using a realistic modeling of the rough Si/SiO2 interface. It is found

that the rough surface causes back-scattering and reduces the velocity of electrons via modi-

fying the DOS in the channel. Mode-mismatch due to interface roughness scattering reduces

the overall transconductance, but does not significantly affect the total gate capacitance. In

addition to the cut-off frequency degradation, its variability is another issue that should be

addressed in RF SiNWTs.

We acknowledge Materials, Structures and Devices Focus Center, one of the six research

centers funded under the Focus Center Research Program (a Semiconductor Research Corpo-

ration entity); Rosen Center for Advanced Computing, National Center for Computational

Sciences, National Institute for Computational Sciences, and Texas Advanced Computing

Center for the supercomputing resources; and NanoHUB for the computational resources.
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