34,168 research outputs found

    Adaptation and Resilience of Interdependent Infrastructure Systems: a Complex Systems Perspective

    Get PDF
    The effects of disruption upon one or more components in interdependent infrastructure systems and the ability of the system to return to normal operations, is investigated in this paper. This addresses the concept of resilience, and examines the trade-off between redundancy and efficiency, as well as the adaptive ability of a system to respond to disruptions and continue to operate, albeit not necessarily as it did initially

    Urban heat stress vulnerability in the U.S. Southwest: The role of sociotechnical systems

    Get PDF
    Heat vulnerability of urban populations is becoming a major issue of concern with climate change, particularly in the cities of the Southwest United States. In this article we discuss the importance of understanding coupled social and technical systems, how they constitute one another, and how they form the conditions and circumstances in which people experience heat. We discuss the particular situation of Los Angeles and Maricopa Counties, their urban form and the electric grid. We show how vulnerable populations are created by virtue of the age and construction of buildings, the morphology of roads and distribution of buildings on the landscape. Further, the regulatory infrastructure of electricity generation and distribution also contributes to creating differential vulnerability. We contribute to a better understanding of the importance of sociotechnical systems. Social infrastructure includes codes, conventions, rules and regulations; technical systems are the hard systems of pipes, wires, buildings, roads, and power plants. These interact to create lock-in that is an obstacle to addressing issues such as urban heat stress in a novel and equitable manner

    Research Agenda in Intelligent Infrastructure to Enhance Disaster Management, Community Resilience and Public Safety

    Full text link
    Modern societies can be understood as the intersection of four interdependent systems: (1) the natural environment of geography, climate and weather; (2) the built environment of cities, engineered systems, and physical infrastructure; (3) the social environment of human populations, communities and socio-economic activities; and (4) an information ecosystem that overlays the other three domains and provides the means for understanding, interacting with, and managing the relationships between the natural, built, and human environments. As the nation and its communities become more connected, networked and technologically sophisticated, new challenges and opportunities arise that demand a rethinking of current approaches to public safety and emergency management. Addressing the current and future challenges requires an equally sophisticated program of research, technology development, and strategic planning. The design and integration of intelligent infrastructure-including embedded sensors, the Internet of Things (IoT), advanced wireless information technologies, real-time data capture and analysis, and machine-learning-based decision support-holds the potential to greatly enhance public safety, emergency management, disaster recovery, and overall community resilience, while addressing new and emerging threats to public safety and security. Ultimately, the objective of this program of research and development is to save lives, reduce risk and disaster impacts, permit efficient use of material and social resources, and protect quality of life and economic stability across entire regions.Comment: A Computing Community Consortium (CCC) white paper, 4 page

    Icebergs in the Clouds: the Other Risks of Cloud Computing

    Full text link
    Cloud computing is appealing from management and efficiency perspectives, but brings risks both known and unknown. Well-known and hotly-debated information security risks, due to software vulnerabilities, insider attacks, and side-channels for example, may be only the "tip of the iceberg." As diverse, independently developed cloud services share ever more fluidly and aggressively multiplexed hardware resource pools, unpredictable interactions between load-balancing and other reactive mechanisms could lead to dynamic instabilities or "meltdowns." Non-transparent layering structures, where alternative cloud services may appear independent but share deep, hidden resource dependencies, may create unexpected and potentially catastrophic failure correlations, reminiscent of financial industry crashes. Finally, cloud computing exacerbates already-difficult digital preservation challenges, because only the provider of a cloud-based application or service can archive a "live," functional copy of a cloud artifact and its data for long-term cultural preservation. This paper explores these largely unrecognized risks, making the case that we should study them before our socioeconomic fabric becomes inextricably dependent on a convenient but potentially unstable computing model.Comment: 6 pages, 3 figure
    • …
    corecore