325 research outputs found

    Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions

    Full text link
    Comprehension of spoken natural language is an essential component for robots to communicate with human effectively. However, handling unconstrained spoken instructions is challenging due to (1) complex structures including a wide variety of expressions used in spoken language and (2) inherent ambiguity in interpretation of human instructions. In this paper, we propose the first comprehensive system that can handle unconstrained spoken language and is able to effectively resolve ambiguity in spoken instructions. Specifically, we integrate deep-learning-based object detection together with natural language processing technologies to handle unconstrained spoken instructions, and propose a method for robots to resolve instruction ambiguity through dialogue. Through our experiments on both a simulated environment as well as a physical industrial robot arm, we demonstrate the ability of our system to understand natural instructions from human operators effectively, and how higher success rates of the object picking task can be achieved through an interactive clarification process.Comment: 9 pages. International Conference on Robotics and Automation (ICRA) 2018. Accompanying videos are available at the following links: https://youtu.be/_Uyv1XIUqhk (the system submitted to ICRA-2018) and http://youtu.be/DGJazkyw0Ws (with improvements after ICRA-2018 submission

    Learning to Generate Unambiguous Spatial Referring Expressions for Real-World Environments

    Full text link
    Referring to objects in a natural and unambiguous manner is crucial for effective human-robot interaction. Previous research on learning-based referring expressions has focused primarily on comprehension tasks, while generating referring expressions is still mostly limited to rule-based methods. In this work, we propose a two-stage approach that relies on deep learning for estimating spatial relations to describe an object naturally and unambiguously with a referring expression. We compare our method to the state of the art algorithm in ambiguous environments (e.g., environments that include very similar objects with similar relationships). We show that our method generates referring expressions that people find to be more accurate (∼\sim30% better) and would prefer to use (∼\sim32% more often).Comment: International Conference on Intelligent Robots and Systems (IROS 2019), Demo 1: Finding the described object (https://youtu.be/BE6-F6chW0w), Demo 2: Referring to the pointed object (https://youtu.be/nmmv6JUpy8M), Supplementary Video (https://youtu.be/sFjBa_MHS98

    Learning Object Placements For Relational Instructions by Hallucinating Scene Representations

    Full text link
    Robots coexisting with humans in their environment and performing services for them need the ability to interact with them. One particular requirement for such robots is that they are able to understand spatial relations and can place objects in accordance with the spatial relations expressed by their user. In this work, we present a convolutional neural network for estimating pixelwise object placement probabilities for a set of spatial relations from a single input image. During training, our network receives the learning signal by classifying hallucinated high-level scene representations as an auxiliary task. Unlike previous approaches, our method does not require ground truth data for the pixelwise relational probabilities or 3D models of the objects, which significantly expands the applicability in practical applications. Our results obtained using real-world data and human-robot experiments demonstrate the effectiveness of our method in reasoning about the best way to place objects to reproduce a spatial relation. Videos of our experiments can be found at https://youtu.be/zaZkHTWFMKMComment: Accepted at the 2020 IEEE International Conference on Robotics and Automation (ICRA). Video at https://www.youtube.com/watch?v=zaZkHTWFMK

    Bayesian Inference of Self-intention Attributed by Observer

    Full text link
    Most of agents that learn policy for tasks with reinforcement learning (RL) lack the ability to communicate with people, which makes human-agent collaboration challenging. We believe that, in order for RL agents to comprehend utterances from human colleagues, RL agents must infer the mental states that people attribute to them because people sometimes infer an interlocutor's mental states and communicate on the basis of this mental inference. This paper proposes PublicSelf model, which is a model of a person who infers how the person's own behavior appears to their colleagues. We implemented the PublicSelf model for an RL agent in a simulated environment and examined the inference of the model by comparing it with people's judgment. The results showed that the agent's intention that people attributed to the agent's movement was correctly inferred by the model in scenes where people could find certain intentionality from the agent's behavior
    • …
    corecore