4 research outputs found

    Interactive volume ray tracing

    Get PDF
    Die Visualisierung von volumetrischen Daten ist eine der interessantesten, aber sicherlich auch schwierigsten Anwendungsgebiete innerhalb der wissenschaftlichen Visualisierung. Im Gegensatz zu Oberflächenmodellen, repräsentieren solche Daten ein semi-transparentes Medium in einem 3D-Feld. Anwendungen reichen von medizinischen Untersuchungen, Simulation physikalischer Prozesse bis hin zur visuellen Kunst. Viele dieser Anwendungen verlangen Interaktivität hinsichtlich Darstellungs- und Visualisierungsparameter. Der Ray-Tracing- (Stahlverfolgungs-) Algorithmus wurde dabei, obwohl er inhärent die Interaktion mit einem solchen Medium simulieren kann, immer als zu langsam angesehen. Die meisten Forscher konzentrierten sich vielmehr auf Rasterisierungsansätze, da diese besser für Grafikkarten geeignet sind. Dabei leiden diese Ansätze entweder unter einer ungenügenden Qualität respektive Flexibilität. Die andere Alternative besteht darin, den Ray-Tracing-Algorithmus so zu beschleunigen, dass er sinnvoll für Visualisierungsanwendungen benutzt werden kann. Seit der Verfügbarkeit moderner Grafikkarten hat die Forschung auf diesem Gebiet nachgelassen, obwohl selbst moderne GPUs immer noch Limitierungen, wie beispielsweise der begrenzte Grafikkartenspeicher oder das umständliche Programmiermodell, enthalten. Die beiden in dieser Arbeit vorgestellten Methoden sind deshalb vollständig softwarebasiert, da es sinnvoller erscheint, möglichst viele Optimierungen in Software zu realisieren, bevor eine Portierung auf Hardware erfolgt. Die erste Methode wird impliziter Kd-Baum genannt, eine hierarchische und räumliche Beschleunigungstruktur, die ursprünglich für die Generierung von Isoflächen reguläre Gitterdatensätze entwickelt wurde. In der Zwischenzeit unterstützt sie auch die semi-transparente Darstellung, die Darstellung von zeitabhängigen Datensätzen und wurde erfolgreich für andere Anwendungen eingesetzt. Der zweite Algorithmus benutzt so genannte Plücker-Koordinaten, welche die Implementierung eines schnellen inkrementellen Traversierers für Datensätze erlauben, deren Primitive Tetraeder beziehungsweise Hexaeder sind. Beide Algorithmen wurden wesentlich optimiert, um eine interaktive Bildgenerierung volumetrischer Daten zu ermöglichen und stellen deshalb einen wichtigen Beitrag hin zu einem flexiblen und interaktiven Volumen-Ray-Tracing-System dar.Volume rendering is one of the most demanding and interesting topics among scientific visualization. Applications include medical examinations, simulation of physical processes, and visual art. Most of these applications demand interactivity with respect to the viewing and visualization parameters. The ray tracing algorithm, although inherently simulating light interaction with participating media, was always considered too slow. Instead, most researchers followed object-order algorithms better suited for graphics adapters, although such approaches often suffer either from low quality or lack of flexibility. Another alternative is to speed up the ray tracing algorithm to make it competitive for volumetric visualization tasks. Since the advent of modern graphic adapters, research in this area had somehow ceased, although some limitations of GPUs, e.g. limited graphics board memory and tedious programming model, are still a problem. The two methods discussed in this thesis are therefore purely software-based since it is believed that software implementations allow for a far better optimization process before porting algorithms to hardware. The first method is called implicit kd-tree, which is a hierarchical spatial acceleration structure originally developed for iso-surface rendering of regular data sets that now supports semi-transparent rendering, time-dependent data visualization, and is even used in non volume-rendering applications. The second algorithm uses so-called Plücker coordinates, providing a fast incremental traversal for data sets consisting of tetrahedral or hexahedral primitives. Both algorithms are highly optimized to support interactive rendering of volumetric data sets and are therefore major contributions towards a flexible and interactive volume ray tracing framework

    Ray Casting for Iso-surface in Volumetric Data

    Get PDF
    Volume data visualization is an active field of research and development. It can be applied in many areas such as medical, oil and gas exploration, etc... Although volume visualization is highly computational cost, there is a vision of real time volumetric visualization systems based on interactive ray tracing. Over the years, many rendering algorithms have been created and enhanced. The focus of this project is to develop a simple ray casting program for volumetric data. The program will be able to render specific volume data using a single processor in a reasonable amount of time. It is opento improve for implementation on multiprocessors. The thesis will compare some existing algorithms for ray casting in terms of image quality, computing time, complexity and so forth. The thesis includes a proposal of new multisampling algorithm, which significantly reduces rendering time while producing similar quality of image with existing algorithms

    Improving the convergence speed of NeRFs with depth supervision and weight initialization

    Get PDF
    Neural rendering is a new and developing field where computer graphics and deep learning techniques are combined to generate photo-realistic images using deep neural networks. In particular, Neural Radiance Fields (NeRF) is able to synthesise novel views of a scene with unprecedented quality by fitting a Multi-Layer Perceptron (MLP) to RGB images. However, training this network requires plenty of time and computation even on modern GPUs, making this new technology hardly employable on practical specialized applications. In this project, we show that employing the known depth of the scene as an additional supervision during the training, and starting from pre-trained weights of other scene with similar setups, instead of from scratch, leads to a convergence speed 3 to 5 time faster
    corecore