4 research outputs found

    Interactive view-driven evenly spaced streamline placement

    Full text link

    Magnitude-based streamlines seed point selection for unsteady flow visualization

    Get PDF
    Flow visualization is a method utilized to obtain information from flow data sets. Proper blood flow visualization can assist surgeons in treating the patients. However, the main problem in visualizing the blood flow inside the aorta is the unsteady blood flow rate. Thus, an unsteady flow visualization method is required to show the blood flow clearly. Unfortunately, streamlines cannot be used by time-dependent flow visualization. This research aims to propose an improvement for the current streamline visualization technique and appearance by implementing an improved streamline generation method based on structured grid vector data to visualize the unsteady flow. The research methodology follows a comparative study method with the Evenly-Spaced Seed Point placement (ESSP) method as the benchmark. Magnitude-Based Seed Point placement (MBSP) and selective streamlines enhancement are introduced to produce longer, uniform, and clutter-free streamlines output. A total of 20 visualization results are produced with different streamlines separation distance. Results are then evaluated by comparing streamlines count and uniformity score. Subsequently, survey and expert reviews are carried out to strengthen the analysis. Survey questions are distributed to respondents that have data visualization knowledge background in order to get feedback related to streamlines uniformity and enhancement. In addition, experts review is conducted to get feedback based on current researches and techniques utilized in the related fields. Results indicate that streamlines count for MBSP are higher, but the differences are neglectable. Uniformity analysis shows good performance; with 80% of the MBSP results have better uniformity. Survey responses show 65% of respondents agreed MBSP results have better uniformity compared to ESSP. Majority of the respondents (92%) agreed that selective streamlines is a better approach. Experts review highlights that MBSP can distribute streamlines better in 3-dimension space compared to ESSP. Two significant findings are identified in this research: magnitude is proven to be an important input to locate seed points; and selective streamlines enhancement is a more effective approach as compared to global streamlines enhancement

    ANALYSIS AND VISUALIZATION OF FLOW FIELDS USING INFORMATION-THEORETIC TECHNIQUES AND GRAPH-BASED REPRESENTATIONS

    Get PDF
    Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms
    corecore