145 research outputs found

    The Design of an Interactive Topic Modeling Application for Media Content

    Get PDF
    Topic Modeling has been widely used by data scientists to analyze the increasing amount of text documents. Documents can be assigned to a distribution of topics with techniques like LDA or NMF, that are related to unsupervised soft clustering but consider text semantics. More recently, Interactive Topic Modeling (ITM) has been introduced to incorporate human expertise in the modeling process. This enables real-time hyperparameter optimization and topic manipulation on document and keyword level. However, current ITM applications are mostly accessible to experienced data scientists, who lack domain knowledge. Domain experts, on the other hand, usually lack the data science expertise to build and use ITM applications. This thesis presents an Interactive Topic Modeling application accessible to non-technical data analysts in the broadcasting domain. The application allows domain experts, like journalists, to explore themes in various produced media content in a dynamic, intuitive and efficient manner. An interactive interface, with an embedded NMF topic model, enables users to filter on various data sources, configure and refine the topic model, interpret and evaluate the output by visualizations, and analyze the data in wider context. This application was designed in collaboration with domain experts in focus group sessions, according to human-centered design principles. An evaluation study with ten participants shows that journalists and data analysts without any natural language processing knowledge agree that the application is not only usable, but also very user-friendly, effective and efficient. A SUS score of 81 was received, and user experience and user perceptions of control questionnaires both received an average of 4.1 on a five-point Likert scale. The ITM application thus enables this specific user group to extract meaningful topics from their produced media content, and use these results in broader perspective to perform exploratory data analysis. The success of the final application design presented in this thesis shows that the knowledge gap between data scientists and domain experts in the broadcasting field has been filled. In bigger perspective; machine learning applications can be made more accessible by translating hidden low-level details of complex models into high-level model interactions, presented in a user interface

    Iterative Seed Word Generation for Interactive Topic Modelling: a Mixed Text Processing and Qualitative Content Analysis Approach

    Get PDF
    Topic models have great potential for helping researchers and practitioners understand the electronic word of mouth (eWoM). This potential is thwarted by their purely unsupervised nature, which often leads to topics that are not entirely explainable. We develop a novel method to iteratively generate seed words to guide the interactive topic models. We assess the validity and applicability of the proposed method by investigating the critical phenomenon of Contact Tracing Mobile Applications (CTMAs) post-adoption during a time of the COVID-19 pandemic. The results show that constructs developed through our interactive topic modeling can capture primary research variables related to the phenomenon. Compared to existing topic modeling methods, our approach shows superior performance in explaining users’ satisfaction with CTMAs

    Does the Geometry of Word Embeddings Help Document Classification? A Case Study on Persistent Homology Based Representations

    Full text link
    We investigate the pertinence of methods from algebraic topology for text data analysis. These methods enable the development of mathematically-principled isometric-invariant mappings from a set of vectors to a document embedding, which is stable with respect to the geometry of the document in the selected metric space. In this work, we evaluate the utility of these topology-based document representations in traditional NLP tasks, specifically document clustering and sentiment classification. We find that the embeddings do not benefit text analysis. In fact, performance is worse than simple techniques like tf-idf\textit{tf-idf}, indicating that the geometry of the document does not provide enough variability for classification on the basis of topic or sentiment in the chosen datasets.Comment: 5 pages, 3 figures. Rep4NLP workshop at ACL 201

    Fast Parallel Randomized Algorithm for Nonnegative Matrix Factorization with KL Divergence for Large Sparse Datasets

    Get PDF
    Nonnegative Matrix Factorization (NMF) with Kullback-Leibler Divergence (NMF-KL) is one of the most significant NMF problems and equivalent to Probabilistic Latent Semantic Indexing (PLSI), which has been successfully applied in many applications. For sparse count data, a Poisson distribution and KL divergence provide sparse models and sparse representation, which describe the random variation better than a normal distribution and Frobenius norm. Specially, sparse models provide more concise understanding of the appearance of attributes over latent components, while sparse representation provides concise interpretability of the contribution of latent components over instances. However, minimizing NMF with KL divergence is much more difficult than minimizing NMF with Frobenius norm; and sparse models, sparse representation and fast algorithms for large sparse datasets are still challenges for NMF with KL divergence. In this paper, we propose a fast parallel randomized coordinate descent algorithm having fast convergence for large sparse datasets to archive sparse models and sparse representation. The proposed algorithm's experimental results overperform the current studies' ones in this problem

    Labeled Interactive Topic Models

    Full text link
    Topic models are valuable for understanding extensive document collections, but they don't always identify the most relevant topics. Classical probabilistic and anchor-based topic models offer interactive versions that allow users to guide the models towards more pertinent topics. However, such interactive features have been lacking in neural topic models. To correct this lacuna, we introduce a user-friendly interaction for neural topic models. This interaction permits users to assign a word label to a topic, leading to an update in the topic model where the words in the topic become closely aligned with the given label. Our approach encompasses two distinct kinds of neural topic models. The first includes models where topic embeddings are trainable and evolve during the training process. The second kind involves models where topic embeddings are integrated post-training, offering a different approach to topic refinement. To facilitate user interaction with these neural topic models, we have developed an interactive interface. This interface enables users to engage with and re-label topics as desired. We evaluate our method through a human study, where users can relabel topics to find relevant documents. Using our method, user labeling improves document rank scores, helping to find more relevant documents to a given query when compared to no user labeling
    • …
    corecore