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 

Abstract—Nonnegative Matrix Factorization (NMF) with 

Kullback-Leibler Divergence (NMF-KL) is one of the most  

significant NMF problems and equivalent to Probabilistic 

Latent Semantic Indexing (PLSI), which has been successfully 

applied in many applications. For sparse count data, a Poisson 

distribution and KL divergence provide sparse models and 

sparse representation, which describe the random variation 

better than a normal distribution and Frobenius norm. Specially, 

sparse models provide more concise understanding of the 

appearance of attributes over latent components, while sparse 

representation provides concise interpretability of the 

contribution of latent components over instances. However, 

minimizing NMF with KL divergence is much more difficult 

than minimizing NMF with Frobenius norm; and sparse models, 

sparse representation and fast algorithms for large sparse 

datasets are still challenges for NMF with KL divergence. In this 

paper, we propose a fast parallel randomized coordinate descent 

algorithm having fast convergence for large sparse datasets to 

archive sparse models and sparse representation. The proposed 

algorithm’s experimental results overperform the current 

studies’ ones in this problem.  

 
Index Terms—Nonnegative matrix factorization, 

kullback-leibler divergence, sparse models, and sparse 

representation.  

 

I. INTRODUCTION 

The development of technology has been generating big 

datasets of count sparse data such as documents and social 

network data, which requires fast effective algorithms to 

manage this huge amount of information. One of these tools is 

nonnegative matrix factorization (NMF) with KL divergence, 

which is proved to be equivalent with Latent Semantic 

Indexing (PLSI) [1]. 

NMF is a powerful linear technique to reduce dimension 

and to extract latent topics, which can be readily interpreted to 

explain phenomenon in science [2]-[4]. NMF makes 

post-processing algorithms such as classification and 

information retrieval faster and more effective. In addition, 

latent factors extracted by NMF can be more concisely 
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interpreted than other linear methods such as PCA and ICA 

[4]. In addition, NMF is flexible with numerous divergences 

to adapt a large number of real applications [5], [6]. 

For sparse count data, NMF with KL divergence and a 

Poisson distribution may provide sparse models and sparse 

representation describing better the random variation rather 

than NMF with Frobenius norm and a normal distribution [7]. 

For example, the appearance of words over latent topics and 

of topics over documents should be sparse. However, 

achieving sparse models and sparse representation is still a 

major challenge because minimizing NMF with KL 

divergence is much more difficult than NMF with Frobenius 

norm [8]. 

In the NMF-KL problem, a given nonnegative data matrix 
n m

V R


 must be factorized into a product of two nonnegative 

matrices, namely a latent component matrix r n

W R


  and a 

representation matrix r m

F R


 , where n is the dimension of a 

data instance, m  is the number of data instances, and r is the 

number of latent components or latent  factors. The quality of 

this factorization is controlled by the  objective function with 

KL divergence as follows: 

1 1

( || ) ( log ( ) )
( )

n m
ijT T

ij ij ijT
i j ij

V
D V W F V V W F

W F 

         (1) 

In the general form of 
1L  and 

2L  regularization variants, 

the objective function is written as follows: 

2 21 2
2 2 1 1 2 1( || ) || W || || || || W || || ||

2 2

TD V W F F F
 

        (2) 

NMF with KL divergence has been widely applied in many 

applications for dense datasets. For example, spatially 

localized, parts-based subspace representation of visual 

patterns is learned by local non-negative matrix factorization 

with a localization constraint (LNMF) [9]. In another study, 

multiple hidden sound objects from a single channel auditory 

scene in the magnitude spectrum domain can be extracted by 

NMF with KL divergence [10]. In addition, two speakers in a 

single channel recording can be separated by NMF with KL 

divergence and 
1L  regularization on F  [11]. 

However, the existing algorithms for NMF with KL 

divergence (NMF-KL) are extremely time-consuming for 

large count sparse datasets. Originally, Lee and Seung, 2001 

[12] proposed the first multiple update iterative algorithm 

based on gradient methods for NMF-KL. Nevertheless, this 

technique is simple and ineffective because it requires a large 

number of iterations, and it ignores negative effects of 
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nonnegative constraints. In addition, gradient methods have 

slow convergence for complicated logarithmic functions like 

KL divergence. Subsequently, Cho-Jui & Inderjit, 2011 [13] 

proposed a cycle coordinate descent algorithm having low 

complexity of one variable update. However, this method 

contains several limitations: first, it computes and stores the 

dense product matrix TW F  although V  is sparse; second, 

the update of TW F  for the change of each cell in W  and F  

is considerably complicated, which leads to practical 

difficulties in parallel and distributed computation; finally, 

the sparsity of data is not considered, while large datasets are 

often highly sparse. 

In comparison with NMF with Frobenius norm, NMF with 

KL divergence is much more complicated because updating 

one variable will influence derivatives of other variables; this 

computation is extremely expensive. Hence, it is difficult to 

employ fast algorithms having multiple variable updates, 

which limits the number of effective methods.  

In this paper, we propose a new advanced version of 

coordinate descent methods with significant modifications for 

large sparse datasets. Regarding the contributions of this 

paper, we: 

 Propose a fast sparse randomized coordinate descent 

algorithm using limited internal memory for nonnegative 

matrix factorization for huge sparse datasets, the full 

matrix of which can not stored in the internal memory. In 

this optimization algorithm, variables are randomly 

selected with uniform sampling to balance the order 

priority of variables. Moreover, the proposed algorithm 

effectively utilizes the sparsity of data, models and 

representation matrices to improve its performance. 

Hence, the proposed algorithm can be considered an 

advanced version of cycle coordinate descent for large 

sparse datasets proposed in [13]. 

 Design parallel algorithms for combinational variants of 

1L  and 
2L  regularizations. 

 Indicate that the proposed algorithm using limited 

memory can fast attain sparse models, sparse 

representation, and fast convergence by evaluational 

experiments, which is a significant milestone in this 

research problem for large sparse datasets. 

The rest of the paper is organized as follows. Section II 

presents the proposed algorithms. The theoretical analysis of 

convergence and complexity is discussed in Section III. 

Section IV shows the experimental results, and Section V 

summarizes the main contributions of this paper and 

discussion. 

 

II. PROPOSED ALGORITHM 

In this section, we propose a fast sparse randomized 

coordinate descent parallel algorithm for nonnegative sparse 

matrix factorization on Kullback-Leibler divergence. We 

employ a multiple iterative update algorithm like EM 

algorithm, see Algorithm 1, because the objective function 

( || )TD V W F  is a non-convex function although it is a convex 

function when fixing one of two matrices TW  and F . This 

algorithm contain a while loop containing two main steps: the 

first one is to optimize the objective function by F  when 

fixing TW ; and the another one is to optimize the objective 

function by W when fixing F . Furthermore, in this algorithm, 

we need to minimize Function 3, the decomposed elements of 

which can be independently optimized in Algorithm 1: 

1 1

( || ) ( || ) ( || )
m n

T T T T

j j i i

j i

D V W F D V W F D V F W
 

            (3) 

Specially, a number of optimization problems 

( || )T

j jD V W F or ( || )T T

i iD V F W in Algorithm 1 with the form 

( || )D v Ax  can be independently and simultaneously solved 

by Algorithm 2. In this paper, we concern combinational 

variants of NMF KL divergence with 
1L and 

2L  

regularizations in the general formula, Function 4: 

2

2 1

1

( ) ( || ) ( log ) || || || ||
2

n
Ti

i i iT
i i

v
f x D x Ax v v A x x x

A x






     
(4) 

where nv R , n rA R 

 , and rx R . 

 

Because the vector v is given, minimizing Function 4 is 

equivalent to minimizing Function 5: 

2

2 1

1

( ) ( || ) ( log( ) ) || || || ||
2

n
T T

i i i

i

f x D x Ax v A x A x x x





        (5) 

From Equation 5, the first and second derivative of the 

variable 
kx  are computed by Formula 6: 

1 1

2
2 2

2
1
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n n
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k i ik kT
i ik i

n
ik

kk i T
ik i

Af
f v A x

x A x
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       

 
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 
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         (6) 

Based on Formula 6, we have several significant remarks: 

 One update of kx changes all elements of Ax , which are 
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under the denominators of fractions. Hence, it is difficult 

to employ fast algorithms having simultaneous updates of 

multiple variables because it will require heavy 

computation. Hence, we employ coordinate descent 

methods to reduce the complexity of each update, and to 

avoid negative effects of nonnegative constraints. 

 One update of kx has complexity of maintaining 
kf and 

2

kkf as ( ( ) ( )) ( )O k nnz v nnz v k nnz v     when 

1

n

ik

i

A


 is computed in advance. Exactly, this update 

employs ( ( ))O k nnz v of multiple and addition 

operators; and ( ( ))O nnz v of divide operators; where 

( )nnz v is the number of is the number of non-zero 

elements in the vector v. Hence, for sparse datasets, the 

number of operators can be negligible. 

 The used internal memory of Algorithm 1 and Algorithm 

2 is  ( ( ) ( ) ( )) ( )O nnz V size W size F nnz V     

( )n m r where ( )nnz V  is the number of non-zero 

elements in the given matrix V , which is much smaller 

than ( ( ) )O mn n m r  for the existing algorithms [12], 

[13]. 

Hence, Algorithm 2 employs a coordinate descent 

algorithm based on projected Newton methods with quadratic 

approximation in Algorithm 2 is to optimize Function 5 

Specially, because Function 5 is convex, a coordinate descent 

algorithm based on projected Newton method [14] with 

quadratic approximation is employed to iteratively update 

with the nonnegative a lower bound as follows: 

2
max(0, )k

k k

kk

f
x x

f


 


 

Considering the limited internal memory and the sparsity of 

x , we maintain TW F via computing Ax instead of storing 

the dense matrix TW F for the following reasons: 

 The internal memory requirement will significantly 

decrease, so the proposed algorithm can stably run on 

limited internal memory machines. 

 The complexity of computing Ax  is always smaller than 

the complexity of computing and maintaining  
kf and 

2

kkf , so it does not cause the computation more 

complicated. 

 The updating 
kAx Ax xA  as the adding with a scale 

of two vectors utilizes the speed of CPU cache because of 

accessing consecutive memory cells. 

 The recomputing helps remove the complexity of 

maintaining the dense product matrix TW F  as in [12], 

[13], which is certainly considerable because this 

maintenance accesses memory cells far together and does 

not utilize CPU cache. 

In summary, in comparison with the original coordinate 

algorithm [13] for NMK-KL, the proposed algorithm involve 

significant improvements as follows: 

 Randomize the order of variables to optimize the 

objective function in Algorithm 2. Hence, the proposed 

algorithm can balance the order priority of variables. 

 Remove duplicated computation of maintaining 

derivatives 
kf and 2

kkf by computing common 

elements 1nsumW W  and 1nsumF F  in advance, 

which led to that the complexity of computing 
kf and 

2

kkf only depends on the sparsity of data. 

 Effectively utilize the sparsity of W  and F  to reduce 

the running time of computing Ax . 

 Recompute Ax  but remove the maintenance of th dense 

matrix product 
TW F . Hence, the proposed algorithm 

stably run on the limited internal memory systems with 

the required memory size  ( )(O nnz V size W  

     )size F nnz V m n r   , which is much smaller 

than   O mn n m r   for the existing algorithms [12], 

[13]. 

 

III. THEORETICAL ANALYSIS 

In this section, we analyze the convergence and complexity 

of Algorithm 1 and Algorithm 2. 

In comparison with the previous algorithm of Hsieh & 

Dhillon, 2011 [13], the proposed algorithm has significant 

modifications for large sparse datasets by means of adding the 

order randomization of indexes and utilizing the sparsity of 

data V , model W , and instance representation F . These 

modifications does not affect on the convergence guarantee of 

algorithm. Hence, based on Theorem 1 in Hsieh & Dhillon, 

2011 [13], Algorithm 2 converges to the global minimum of 

( )f x . Furthermore, based on Theorem 3 in Hsieh & Dhillon, 

2011 [13],  Algorithm 1 using Algorithm 2 will converge to a 

stationary point. In practice, we set 0.1x   in Algorithm 2, 

which is more precise than 0.5x   in Hsieh & Dhillon, 

2011 [13]. 

Concerning the complexity of Algorithm 2, based on the 

remarks in Section II, we have Theorem 1. Furthermore, 

because KL divergence is a convex function over one variable 

and the nonnegative domain, and project Newton methods 

with quadratic approximation for convex functions have 

superlinear rate of convergence [14], [15], the average 

number of iterations t  is small. 

Theorem 1. The complexity of Algorithm 2 is 

( . ( ) ( ( )))O n nnz r tr r n nnz n   , where ( )nnz r  is the 

number of non-zero elements in x , ( )nnz n is the number of 

non-zero elements in v , and t  is the average number of 

iterations. Then, the complexity of a while iteration in 

Algorithm 1 is 2( ( ( ) ))O tr mnr m n r  . 

Proof. Consider the major computation in Algorithm 2, 

based on Formula 6, we have: 

 The complexity of computing Ax  in Line 2 is 

  .O n nnz r . 

 The complexity of computing 
kf and 2

kkf  in Line 4 is 

( ( ))O r nnz n  because Ax  and sumA are computed 

in advance. 
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 The complexity of updating 
kf and 2

kkf  in Line 12 

is ( ( ))O r n nnz n   because only one dimension of 

vector x  is changed. 

Hence, the complexity of Algorithm 2 is ( . ( )O n nnz r   

( ( )))tr r n nnz n  . 

In addition, the complexity of computing sumW  and 

sumF is (( ) )O n m r . Hence, the complexity of a while 

iteration in Algorithm 1 is (( ) . ( )O m n r mn nnz r    

2( ( )) ( ) ( ( ) )tmr r n nnz n m n r t mnr m n r        

2( ( ) )t mnr m n r   . Therefore, we have Theorem 1.  

For large sparse datasets,  , ( ( (m n r O t mnr m   

2) )) ( )n r t mnr  . This complexity is raised by the 

operators 
kAx Ax xA  in Algorithm 2. To reduce the 

running  time of these operators, kA  must be stored in an 

array to utilize CPU cache memory by accessing continuous 

memory cells of Ax  and 
kA . 

 

IV. EXPERIMENTAL EVALUATION 

In this section, we investigate the effectiveness of the 

proposed algorithm via convergence and sparsity. Specially, 

we compare the proposed algorithm Sparse Randomized 

Coordinate Descent (SRCD) with state-of-the-art algorithms 

as follows: 

 Multiplicative Update (MU) [12]: This algorithm is the 

original method for NMF with KL divergence. 

 Cycle Coordinate Descent (CCD) [13]: This algorithm 

has the current fastest convergence because it has very 

low complexity of each update for one variable. 

Datasets: To investigate the effectiveness of the algorithms 

compared, the 4 sparse datasets used are shown in  Table I. 

The dataset Digit is downloaded from http://yann.lecun.com/, 

and the other tf-idf datasets Reuters21578, TDT2, and 

RCV1_4Class are downloaded from 

http://www.cad.zju.edu.cn/. 

 
TABLE I: SUMMARY OF DATASETS 

Dataset (V) n m nnz(V) Sparsity(%) 

Digits 784 60,000 8,994,156 80.880 

Reuters21578 8,293 18,933 389,455 99.752 

TDT2 9,394 36,771 1,224,135 99.645 

RCV1_4Class 9,625 29,992 730,879 99.746 

 

Environment settings: We develop the proposed algorithm 

SRCD in Matlab with embedded code C++ to compare 

them with other algorithms. We set system parameters to use 

only 1 CPU for Matlab and the IO time is excluded in the 

machine Mac Pro 8-Core Intel Xeon E5 3 GHz 32GB. In 

addition, the initial matrices W0 and F0 are set to the same 

values. The source code will be published on our homepage 

http://khuongnd.appspot.com/. 

A. Convergence 

In this section, we investigate the convergence of the 

objective value ( || )TD V W F  versus running time by running 

all the compared algorithms on the four datasets with two 

numbers of latent factors 10r   and 20r  . The 

experimental results are depicted in Fig. 1 and Fig. 2. From 

these figures, we realize two significant observations as 

follows: 

 The proposed algorithm (SRCD) has much faster 

convergence than the algorithms CCD and MU. 

 The sparser the datasets are, the greater the distinction 

between the convergence of the algorithm SRCD and the 

other algorithms CCD and MU is. Specially, for Digits 

with 81% sparsity, the algorithm SRCD’s convergence is 

lightly faster than the convergence of the algorithms CCD 

and MU. However, for three more sparse datasets 

Reuters21578, TDT2, and RCV1 4Class with above 99% 

sparsity, the distance between these convergence speeds  

is readily apparent. 

 

 
Fig. 1. Objective value ( || )TD V W F versus running time with 10r  . 

 

 
Fig. 2. Objective value ( || )TD V W F versus running time with 10r  . 

 

B. Sparsity of Factor Matrices 

Concerning the sparsity of factor matrices W and F, the 
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algorithms CCD and MU does not utilize the sparsity of factor 

matrices. Hence, these algorithms add a small number into 

these factor matrices to obtain convenience in processing  

special numerical cases. Hence, the sparsity of factor matrices 

W and F for the algorithms CCD and MU both are 0%. 

Although this processing may not affect other 

post-processing tasks such as classification and information 

retrieval, it will reduce the performance of these algorithms. 

The sparsity of ( , )W F  of the proposed algorithm’s results is 

showed in Table II. These results clearly indicate that the 

sparse model W and the sparse representation F are attained. 

The results also explain why the proposed algorithm runs very 

fast on the sparse datasets Reuters21578, TDT2 and RCV1 

4Class, when it can obtain highly sparse models and sparse 

representation in these highly sparse datasets. 

 
TABLE II: SPARSITY (%) OF (W, F) FOR THE ALGORITHM SRCD'S RESULTS 

 Digits Reuters21578 TDT2 RCV1_4Class 

r=10 (74.3,49.2) (75.6,71.6) (68.5,71.3) (81.2,74.0) 

r=20 (87.8,49.7) (84.2,80.4) (78.6,81.1) (88.4,83.0) 

 

C. Used Internal Memory 

Table III shows the internal memory used by algorithms. 

From the table, we have two significant observations: 

 For the dense dataset Digits, the proposed algorithm 

SRCD uses more internal memory than the the algorithm 

CCD because a considerable amount of memory is used 

for the indexing of matrices. 

 For the sparse datasets Reuters21578, TDT2, and RCV1 

4Class, the internal memory for SRCD is remarkably 

smaller than the internal one for MU and CCD. 

These results indicate that we can conduct the proposed 

algorithm for huge sparse datasets with a limited internal 

memory machine is stable. 

 
TABLE II: USED INTERNAL MEMORY (GB) FOR 10r   

Datasets MU CCD SRCD 

Digits 1.89 0.85 1.76 

Reuters21578 5.88 2.46 0.17 

TDT2 11.51 5.29 0.30 

RCV1_4Class 9.73 4.43 0.23 

 

D. Running on Large Datasets 

 

 
Fig. 3. Running time of 100 iterations with different number of latent 

component using 1 thread. 

This section investigates running the proposed algorithm 

on large datasets with different settings. Fig. 3 shows the 

running time of Algorithm SRCD for 100 iterations with 

different number of latent component using 1 thread. Clearly, 

the running time linearly increases, which fits the theoretical 

analyses about fast convergence and linear complexity for 

large sparse datasets in Section III. Furthermore, concerning 

the parallel algorithm, the running time of Algorithm SRCD 

for 100 iterations significantly decreases when the number of 

used threads increases in Fig. 4. In addition, the running time 

is acceptable for large applications. Hence, these results 

indicate that the proposed algorithm SRCD is feasible for 

large scale applications. 

 

 
Fig. 4. Running time of 100 iterations with r = 50 and using different number 

of threads. 

 

V. CONCLUSION AND DISCUSSION 

In this paper, we propose a fast parallel randomized 

coordinate  descent algorithm for NMF with KL divergence 

for  large sparse datasets. The proposed algorithm attains fast 

convergence by means of removing duplicated computation, 

exploiting sparse properties of data, model and representation 

matrices, and utilizing the fast accessing speed of CPU cache. 

In addition, our method can stably run systems within limited 

internal memory by reducing internal memory requirements. 

Finally, the experimental results indicate that highly sparse 

models and sparse representation can be attained for large 

sparse datasets, a significant milestone in researching this 

problem. In future research, we will generalize this algorithm 

for nonnegative tensor factorization. 
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