69,209 research outputs found

    Using the quantum probability ranking principle to rank interdependent documents

    Get PDF
    A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements

    A framework for investigating the interaction in information retrieval

    Get PDF
    To increase retrieval effectiveness, information retrieval systems must offer better supports to users in their information seeking activities. To achieve this, one major concern is to obtain a better understanding of the nature of the interaction between a user and an information retrieval system. For this, we need a means to analyse the interaction in information retrieval, so as to compare the interaction processes within and across information retrieval systems. We present a framework for investigating the interaction between users and information retrieval systems. The framework is based on channel theory, a theory of information and its flow, which provides an explicit ontology that can be used to represent any aspect of the interaction process. The developed framework allows for the investigation of the interaction in information retrieval at the desired level of abstraction. We use the framework to investigate the interaction in relevance feedback and standard web search

    A study of factors affecting the utility of implicit relevance feedback

    Get PDF
    Implicit relevance feedback (IRF) is the process by which a search system unobtrusively gathers evidence on searcher interests from their interaction with the system. IRF is a new method of gathering information on user interest and, if IRF is to be used in operational IR systems, it is important to establish when it performs well and when it performs poorly. In this paper we investigate how the use and effectiveness of IRF is affected by three factors: search task complexity, the search experience of the user and the stage in the search. Our findings suggest that all three of these factors contribute to the utility of IRF

    Visual exploration and retrieval of XML document collections with the generic system X2

    Get PDF
    This article reports on the XML retrieval system X2 which has been developed at the University of Munich over the last five years. In a typical session with X2, the user first browses a structural summary of the XML database in order to select interesting elements and keywords occurring in documents. Using this intermediate result, queries combining structure and textual references are composed semiautomatically. After query evaluation, the full set of answers is presented in a visual and structured way. X2 largely exploits the structure found in documents, queries and answers to enable new interactive visualization and exploration techniques that support mixed IR and database-oriented querying, thus bridging the gap between these three views on the data to be retrieved. Another salient characteristic of X2 which distinguishes it from other visual query systems for XML is that it supports various degrees of detailedness in the presentation of answers, as well as techniques for dynamically reordering and grouping retrieved elements once the complete answer set has been computed

    A study of interface support mechanisms for interactive information retrieval

    Get PDF
    Advances in search technology have meant that search systems can now offer assistance to users beyond simply retrieving a set of documents. For example, search systems are now capable of inferring user interests by observing their interaction, offering suggestions about what terms could be used in a query, or reorganizing search results to make exploration of retrieved material more effective. When providing new search functionality, system designers must decide how the new functionality should be offered to users. One major choice is between (a) offering automatic features that require little human input, but give little human control; or (b) interactive features which allow human control over how the feature is used, but often give little guidance over how the feature should be best used. This article presents a study in which we empirically investigate the issue of control by presenting an experiment in which participants were asked to interact with three experimental systems that vary the degree of control they had in creating queries, indicating which results are relevant in making search decisions. We use our findings to discuss why and how the control users want over search decisions can vary depending on the nature of the decisions and the impact of those decisions on the user's search

    Visualising the structure of document search results: A comparison of graph theoretic approaches

    Get PDF
    This is the post-print of the article - Copyright @ 2010 Sage PublicationsPrevious work has shown that distance-similarity visualisation or ‘spatialisation’ can provide a potentially useful context in which to browse the results of a query search, enabling the user to adopt a simple local foraging or ‘cluster growing’ strategy to navigate through the retrieved document set. However, faithfully mapping feature-space models to visual space can be problematic owing to their inherent high dimensionality and non-linearity. Conventional linear approaches to dimension reduction tend to fail at this kind of task, sacrificing local structural in order to preserve a globally optimal mapping. In this paper the clustering performance of a recently proposed algorithm called isometric feature mapping (Isomap), which deals with non-linearity by transforming dissimilarities into geodesic distances, is compared to that of non-metric multidimensional scaling (MDS). Various graph pruning methods, for geodesic distance estimation, are also compared. Results show that Isomap is significantly better at preserving local structural detail than MDS, suggesting it is better suited to cluster growing and other semantic navigation tasks. Moreover, it is shown that applying a minimum-cost graph pruning criterion can provide a parameter-free alternative to the traditional K-neighbour method, resulting in spatial clustering that is equivalent to or better than that achieved using an optimal-K criterion

    Highly focused document retrieval in aerospace engineering : user interaction design and evaluation

    Get PDF
    Purpose – This paper seeks to describe the preliminary studies (on both users and data), the design and evaluation of the K-Search system for searching legacy documents in aerospace engineering. Real-world reports of jet engine maintenance challenge the current indexing practice, while real users’ tasks require retrieving the information in the proper context. K-Search is currently in use in Rolls-Royce plc and has evolved to include other tools for knowledge capture and management. Design/methodology/approach – Semantic Web techniques have been used to automatically extract information from the reports while maintaining the original context, allowing a more focused retrieval than with more traditional techniques. The paper combines semantic search with classical information retrieval to increase search effectiveness. An innovative user interface has been designed to take advantage of this hybrid search technique. The interface is designed to allow a flexible and personal approach to searching legacy data. Findings – The user evaluation showed that the system is effective and well received by users. It also shows that different people look at the same data in different ways and make different use of the same system depending on their individual needs, influenced by their job profile and personal attitude. Research limitations/implications – This study focuses on a specific case of an enterprise working in aerospace engineering. Although the findings are likely to be shared with other engineering domains (e.g. mechanical, electronic), the study does not expand the evaluation to different settings. Originality/value – The study shows how real context of use can provide new and unexpected challenges to researchers and how effective solutions can then be adopted and used in organizations.</p
    corecore