2 research outputs found

    USCID water management conference

    Get PDF
    Presented at Upgrading technology and infrastructure in a finance-challenged economy: a USCID water management conference held on March 23-26, 2010 in Sacramento, California.Includes bibliographical references.The Central Arizona Irrigation and Drainage District (CAIDD) began delivering water to users in 1989. Although designed for automatic control, the system was run manually until a homemade SCADA (Supervisory Control and Data Acquisition) system was developed by district employees. In 2002, problems with radio communication and limitations of the homemade SCADA system prompted CAIDD to begin the process of modernization. New spread-spectrum radios and RTUs (Remote Terminal Units) were purchased along with a commercial SCADA package (iFix by GE-IP). In 2005, CAIDD decided to pursue implementation of full automated control of a majority of district check gates. Currently, 125 gates are under remote manual supervisory control and 129 water levels are remotely monitored. CAIDD chose to implement SacMan (Software for Automated Canal Management) under development by the U.S. Arid Land Agricultural Research Center, Maricopa, AZ. The decision was made to only apply full automation at gates that had gate position sensors. Thus purchase and installation of gate position sensors have slowed implementation. To date, five lateral canals have been set up for full automatic control, where SacMan routes flow changes through the canal and uses downstream water level feedback control to correct for any errors that occur. The ditchrider only makes changes at the farm turnouts and district-operated wells. Automation of the Central Main canal has been tested in simulation. Control of this canal requires special treatment, as described in a companion paper. The district is waiting until enough of the canal is ready for automation before it turns automatic controls on 24/7, since this will require some operator training and remote oversight when problems occur. We hope this occurs in the summer of 2010

    Minimally intrusive strategies for fault detection and energy monitoring

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 185-196).This thesis addresses the need for automated monitoring systems that rely on minimally intrusive sensor arrays. The monitoring techniques employed in this thesis require fewer sensors because they take a different approach to the measurement problem. Specifically, these techniques use the power distribution network in the target system as a power source, a sensor array, and a communications channel. In this "multi-use" approach, the only measurement sources are a set of centrally located electrical transducers (i.e. voltage and current sensors) and a set of remotely located sensors that communicate with a central processing unit via power line modems. In general, these systems determine the status of critical loads or systems using only electrical data. Thus, remotely located sensors are only employed in order to gather information that would be difficult, if not impossible, to obtain electrically. Examples of such quantities include air exchange rates and occupancy levels in individual rooms. This thesis describes the development and application of several critical features of the minimally intrusive monitoring systems described above. First, it presents several model-based methods that make it possible to use electrical data to detect faults in certain mechanical systems.(cont.) In particular, two such models are described. The first of these is intended to be applied in systems in which an electromechanical actuator cycles its operation according to the value of some other variable, such as a pressure or a temperature. Examples include compressed air and vacuum systems. The other model is used to diagnose the impending failure of the mechanical coupling through which a motor drives an inertial load such as a pump impeller. This thesis also describes the development of a minimally intrusive airflow monitoring system that uses ozone as a tracer gas. This system fits easily into the "multi-use" framework because it relies on a network of distributed ozone generators and detectors whose operation is coordinated via power line communications. Finally, this thesis also presents and demonstrates a method for detecting the operation of various electrical loads using transient changes in the measured line voltage. This technique makes it possible to use "plug-in" sensors to determine the operating schedule of each of the various loads in a home or commercial facility. All of the techniques and methods described here are demonstrated experimentally.by Robert Williams Cox, IV.Ph.D
    corecore