1,924 research outputs found

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    BeCAPTCHA: Behavioral bot detection using touchscreen and mobile sensors benchmarked on HuMIdb

    Full text link
    In this paper we study the suitability of a new generation of CAPTCHA methods based on smartphone interactions. The heterogeneous flow of data generated during the interaction with the smartphones can be used to model human behavior when interacting with the technology and improve bot detection algorithms. For this, we propose BeCAPTCHA, a CAPTCHA method based on the analysis of the touchscreen information obtained during a single drag and drop task in combination with the accelerometer data. The goal of BeCAPTCHA is to determine whether the drag and drop task was realized by a human or a bot. We evaluate the method by generating fake samples synthesized with Generative Adversarial Neural Networks and handcrafted methods. Our results suggest the potential of mobile sensors to characterize the human behavior and develop a new generation of CAPTCHAs. The experiments are evaluated with HuMIdb1 (Human Mobile Interaction database), a novel multimodal mobile database that comprises 14 mobile sensors acquired from 600 users. HuMIdb is freely available to the research communityThis work has been supported by projects: PRIMA, Spain (H2020-MSCA-ITN-2019-860315), TRESPASS-ETN, Spain (H2020-MSCA-ITN-2019-860813), BIBECA RTI2018-101248-B-I00 (MINECO/FEDER), and BioGuard, Spain (Ayudas Fundación BBVA a Equipos de Investigación Científica 2017). Spanish Patent Application P20203006

    Fingerprinting Smart Devices Through Embedded Acoustic Components

    Full text link
    The widespread use of smart devices gives rise to both security and privacy concerns. Fingerprinting smart devices can assist in authenticating physical devices, but it can also jeopardize privacy by allowing remote identification without user awareness. We propose a novel fingerprinting approach that uses the microphones and speakers of smart phones to uniquely identify an individual device. During fabrication, subtle imperfections arise in device microphones and speakers which induce anomalies in produced and received sounds. We exploit this observation to fingerprint smart devices through playback and recording of audio samples. We use audio-metric tools to analyze and explore different acoustic features and analyze their ability to successfully fingerprint smart devices. Our experiments show that it is even possible to fingerprint devices that have the same vendor and model; we were able to accurately distinguish over 93% of all recorded audio clips from 15 different units of the same model. Our study identifies the prominent acoustic features capable of fingerprinting devices with high success rate and examines the effect of background noise and other variables on fingerprinting accuracy
    corecore