1,089 research outputs found

    The MultiDark Database: Release of the Bolshoi and MultiDark Cosmological Simulations

    Full text link
    We present the online MultiDark Database -- a Virtual Observatory-oriented, relational database for hosting various cosmological simulations. The data is accessible via an SQL (Structured Query Language) query interface, which also allows users to directly pose scientific questions, as shown in a number of examples in this paper. Further examples for the usage of the database are given in its extensive online documentation (www.multidark.org). The database is based on the same technology as the Millennium Database, a fact that will greatly facilitate the usage of both suites of cosmological simulations. The first release of the MultiDark Database hosts two 8.6 billion particle cosmological N-body simulations: the Bolshoi (250/h Mpc simulation box, 1/h kpc resolution) and MultiDark Run1 simulation (MDR1, or BigBolshoi, 1000/h Mpc simulation box, 7/h kpc resolution). The extraction methods for halos/subhalos from the raw simulation data, and how this data is structured in the database are explained in this paper. With the first data release, users get full access to halo/subhalo catalogs, various profiles of the halos at redshifts z=0-15, and raw dark matter data for one time-step of the Bolshoi and four time-steps of the MultiDark simulation. Later releases will also include galaxy mock catalogs and additional merging trees for both simulations as well as new large volume simulations with high resolution. This project is further proof of the viability to store and present complex data using relational database technology. We encourage other simulators to publish their results in a similar manner.Comment: 28 pages, 9 figures, submitted to New Astronom

    Enhanced perception in volume visualization

    Get PDF
    Due to the nature of scientic data sets, the generation of convenient visualizations may be a difficult task, but crucial to correctly convey the relevant information of the data. When working with complex volume models, such as the anatomical ones, it is important to provide accurate representations, since a misinterpretation can lead to serious mistakes while diagnosing a disease or planning surgery. In these cases, enhancing the perception of the features of interest usually helps to properly understand the data. Throughout years, researchers have focused on different methods to improve the visualization of volume data sets. For instance, the definition of good transfer functions is a key issue in Volume Visualization, since transfer functions determine how materials are classified. Other approaches are based on simulating realistic illumination models to enhance the spatial perception, or using illustrative effects to provide the level of abstraction needed to correctly interpret the data. This thesis contributes with new approaches to enhance the visual and spatial perception in Volume Visualization. Thanks to the new computing capabilities of modern graphics hardware, the proposed algorithms are capable of modifying the illumination model and simulating illustrative motifs in real time. In order to enhance local details, which are useful to better perceive the shape and the surfaces of the volume, our first contribution is an algorithm that employs a common sharpening operator to modify the lighting applied. As a result, the overall contrast of the visualization is enhanced by brightening the salient features and darkening the deeper regions of the volume model. The enhancement of depth perception in Direct Volume Rendering is also covered in the thesis. To do this, we propose two algorithms to simulate ambient occlusion: a screen-space technique based on using depth information to estimate the amount of light occluded, and a view-independent method that uses the density values of the data set to estimate the occlusion. Additionally, depth perception is also enhanced by adding halos around the structures of interest. Maximum Intensity Projection images provide a good understanding of the high intensity features of the data, but lack any contextual information. In order to enhance the depth perception in such a case, we present a novel technique based on changing how intensity is accumulated. Furthermore, the perception of the spatial arrangement of the displayed structures is also enhanced by adding certain colour cues. The last contribution is a new manipulation tool designed for adding contextual information when cutting the volume. Based on traditional illustrative effects, this method allows the user to directly extrude structures from the cross-section of the cut. As a result, the clipped structures are displayed at different heights, preserving the information needed to correctly perceive them.Debido a la naturaleza de los datos científicos, visualizarlos correctamente puede ser una tarea complicada, pero crucial para interpretarlos de forma adecuada. Cuando se trabaja con modelos de volumen complejos, como es el caso de los modelos anatómicos, es importante generar imágenes precisas, ya que una mala interpretación de las mismas puede producir errores graves en el diagnóstico de enfermedades o en la planificación de operaciones quirúrgicas. En estos casos, mejorar la percepción de las zonas de interés, facilita la comprensión de la información inherente a los datos. Durante décadas, los investigadores se han centrado en el desarrollo de técnicas para mejorar la visualización de datos volumétricos. Por ejemplo, los métodos que permiten definir buenas funciones de transferencia son clave, ya que éstas determinan cómo se clasifican los materiales. Otros ejemplos son las técnicas que simulan modelos de iluminación realista, que permiten percibir mejor la distribución espacial de los elementos del volumen, o bien los que imitan efectos ilustrativos, que proporcionan el nivel de abstracción necesario para interpretar correctamente los datos. El trabajo presentado en esta tesis se centra en mejorar la percepción de los elementos del volumen, ya sea modificando el modelo de iluminación aplicado en la visualización, o simulando efectos ilustrativos. Aprovechando la capacidad de cálculo de los nuevos procesadores gráficos, se describen un conjunto de algoritmos que permiten obtener los resultados en tiempo real. Para mejorar la percepción de detalles locales, proponemos modificar el modelo de iluminación utilizando una conocida herramienta de procesado de imágenes (unsharp masking). Iluminando aquellos detalles que sobresalen de las superficies y oscureciendo las zonas profundas, se mejora el contraste local de la imagen, con lo que se consigue realzar los detalles de superficie. También se presentan diferentes técnicas para mejorar la percepción de la profundidad en Direct Volume Rendering. Concretamente, se propone modificar la iluminación teniendo en cuenta la oclusión ambiente de dos maneras diferentes: la primera utiliza los valores de profundidad en espacio imagen para calcular el factor de oclusión del entorno de cada pixel, mientras que la segunda utiliza los valores de densidad del volumen para aproximar dicha oclusión en cada vóxel. Además de estas dos técnicas, también se propone mejorar la percepción espacial y de la profundidad de ciertas estructuras mediante la generación de halos. La técnica conocida como Maximum Intensity Projection (MIP) permite visualizar los elementos de mayor intensidad del volumen, pero no aporta ningún tipo de información contextual. Para mejorar la percepción de la profundidad, proponemos una nueva técnica basada en cambiar la forma en la que se acumula la intensidad en MIP. También se describe un esquema de color para mejorar la percepción espacial de los elementos visualizados. La última contribución de la tesis es una herramienta de manipulación directa de los datos, que permite preservar la información contextual cuando se realizan cortes en el modelo de volumen. Basada en técnicas ilustrativas tradicionales, esta técnica permite al usuario estirar las estructuras visibles en las secciones de los cortes. Como resultado, las estructuras de interés se visualizan a diferentes alturas sobre la sección, lo que permite al observador percibirlas correctamente

    nbodykit: an open-source, massively parallel toolkit for large-scale structure

    Get PDF
    We present nbodykit, an open-source, massively parallel Python toolkit for analyzing large-scale structure (LSS) data. Using Python bindings of the Message Passing Interface (MPI), we provide parallel implementations of many commonly used algorithms in LSS. nbodykit is both an interactive and scalable piece of scientific software, performing well in a supercomputing environment while still taking advantage of the interactive tools provided by the Python ecosystem. Existing functionality includes estimators of the power spectrum, 2 and 3-point correlation functions, a Friends-of-Friends grouping algorithm, mock catalog creation via the halo occupation distribution technique, and approximate N-body simulations via the FastPM scheme. The package also provides a set of distributed data containers, insulated from the algorithms themselves, that enable nbodykit to provide a unified treatment of both simulation and observational data sets. nbodykit can be easily deployed in a high performance computing environment, overcoming some of the traditional difficulties of using Python on supercomputers. We provide performance benchmarks illustrating the scalability of the software. The modular, component-based approach of nbodykit allows researchers to easily build complex applications using its tools. The package is extensively documented at http://nbodykit.readthedocs.io, which also includes an interactive set of example recipes for new users to explore. As open-source software, we hope nbodykit provides a common framework for the community to use and develop in confronting the analysis challenges of future LSS surveys.Comment: 18 pages, 7 figures. Feedback very welcome. Code available at https://github.com/bccp/nbodykit and for documentation, see http://nbodykit.readthedocs.i

    Vicinity Occlusion Maps: Enhanced Depth Perception of Volumetric Models

    Get PDF
    Volume models often show high depth complexity. This poses di±culties to the observer in judging the spatial relationships accurately. Illustrators usually use certain techniques such as halos or edge darkening in order to enhance depth perception of certain structures. Halos may be dark or light, and even colored. Halo construction on a volumetric basis impacts rendering performance due to the complexity of the construction process. In this paper we present Vicinity Occlusion Maps: a simple and fast method to compute the light occlusion due to neighboring voxels. Vicinity Occlusion Maps may be used to generate flexible halos around objects or selected structures in order to enhance depth perception or accentuate the presence of some structures in volumetric models at a low cost. The user may freely select the structure that requires the halos to be generated, its color and size, and our proposed application generates those in real time. They may also be used to perform vicinity shading in realtime, or even to combine both effects.Peer ReviewedPostprint (author’s final draft

    Doctor of Philosophy

    Get PDF
    dissertationA broad range of applications capture dynamic data at an unprecedented scale. Independent of the application area, finding intuitive ways to understand the dynamic aspects of these increasingly large data sets remains an interesting and, to some extent, unsolved research problem. Generically, dynamic data sets can be described by some, often hierarchical, notion of feature of interest that exists at each moment in time, and those features evolve across time. Consequently, exploring the evolution of these features is considered to be one natural way of studying these data sets. Usually, this process entails the ability to: 1) define and extract features from each time step in the data set; 2) find their correspondences over time; and 3) analyze their evolution across time. However, due to the large data sizes, visualizing the evolution of features in a comprehensible manner and performing interactive changes are challenging. Furthermore, feature evolution details are often unmanageably large and complex, making it difficult to identify the temporal trends in the underlying data. Additionally, many existing approaches develop these components in a specialized and standalone manner, thus failing to address the general task of understanding feature evolution across time. This dissertation demonstrates that interactive exploration of feature evolution can be achieved in a non-domain-specific manner so that it can be applied across a wide variety of application domains. In particular, a novel generic visualization and analysis environment that couples a multiresolution unified spatiotemporal representation of features with progressive layout and visualization strategies for studying the feature evolution across time is introduced. This flexible framework enables on-the-fly changes to feature definitions, their correspondences, and other arbitrary attributes while providing an interactive view of the resulting feature evolution details. Furthermore, to reduce the visual complexity within the feature evolution details, several subselection-based and localized, per-feature parameter value-based strategies are also enabled. The utility and generality of this framework is demonstrated by using several large-scale dynamic data sets
    • …
    corecore