11,418 research outputs found

    Interactive interrogation of computational mixing data in a virtual environment

    Get PDF
    Mixing processes are essential in the chemical process industries, including food processors, consumer products corporations, and pharmaceutical manufacturers. The increased use of computational fluid dynamics (CFD) during the design and analysis of static and stirred mixers has provided increased insight into mixing processes. However, the velocities, temperatures, and pressures are insufficient to completely quantify a mixing process. A more complete understanding of mixing processes is given by the material spatial distribution of massless particles as they move through the flow field. This research seeks to combine surround-screen virtual reality and particle tracing of massless particles into an interactive virtual environment to explore the benefits these tools bring to engineers seeking to understand the behavior of fluids in mixing processes. Surround-screen virtual reality (VR) provides a means to immerse users into the mixing data where they can collaboratively investigate the flow features as displayed on a large scale stereo-projection system. This work integrates the particle tracing computation power of the HyperTrace[Superscript TM] commercial software application with new data interrogation techniques made possible by the use of virtual reality technology. Parallel processing to facilitate interactive placement of particles in the flow, volume data selection using a convex hull approach, cutting plane generation, and the integration of voice control and a tablet PC will be presented. Both a stirred mixing vessel and flow through a duct will be used as examples. Finally, the benefits of VR applied to mixing analysis are presented, along with some suggestions for future work in this area

    Extracting Tree-structures in CT data by Tracking Multiple Statistically Ranked Hypotheses

    Full text link
    In this work, we adapt a method based on multiple hypothesis tracking (MHT) that has been shown to give state-of-the-art vessel segmentation results in interactive settings, for the purpose of extracting trees. Regularly spaced tubular templates are fit to image data forming local hypotheses. These local hypotheses are used to construct the MHT tree, which is then traversed to make segmentation decisions. However, some critical parameters in this method are scale-dependent and have an adverse effect when tracking structures of varying dimensions. We propose to use statistical ranking of local hypotheses in constructing the MHT tree, which yields a probabilistic interpretation of scores across scales and helps alleviate the scale-dependence of MHT parameters. This enables our method to track trees starting from a single seed point. Our method is evaluated on chest CT data to extract airway trees and coronary arteries. In both cases, we show that our method performs significantly better than the original MHT method.Comment: Accepted for publication at the International Journal of Medical Physics and Practic

    Automated tracing of myelinated axons and detection of the nodes of Ranvier in serial images of peripheral nerves

    Get PDF
    The development of realistic neuroanatomical models of peripheral nerves for simulation purposes requires the reconstruction of the morphology of the myelinated fibres in the nerve, including their nodes of Ranvier. Currently, this information has to be extracted by semimanual procedures, which severely limit the scalability of the experiments. In this contribution, we propose a supervised machine learning approach for the detailed reconstruction of the geometry of fibres inside a peripheral nerve based on its high-resolution serial section images. Learning from sparse expert annotations, the algorithm traces myelinated axons, even across the nodes of Ranvier. The latter are detected automatically. The approach is based on classifying the myelinated membranes in a supervised fashion, closing the membrane gaps by solving an assignment problem, and classifying the closed gaps for the nodes of Ranvier detection. The algorithm has been validated on two very different datasets: (i) rat vagus nerve subvolume, SBFSEM microscope, 200 Ă— 200 Ă— 200 nm resolution, (ii) rat sensory branch subvolume, confocal microscope, 384 Ă— 384 Ă— 800 nm resolution. For the first dataset, the algorithm correctly reconstructed 88% of the axons (241 out of 273) and achieved 92% accuracy on the task of Ranvier node detection. For the second dataset, the gap closing algorithm correctly closed 96.2% of the gaps, and 55% of axons were reconstructed correctly through the whole volume. On both datasets, training the algorithm on a small data subset and applying it to the full dataset takes a fraction of the time required by the currently used semiautomated protocols. Our software, raw data and ground truth annotations are available at http://hci.iwr.uni-heidelberg.de/Benchmarks/. The development version of the code can be found at https://github.com/RWalecki/ATMA

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    Virtual liver biopsy: image processing and 3D visualization

    Get PDF

    Knife Edge Scanning Microscope Brain Atlas Interface for Tracing and Analysis of Vasculature Data

    Get PDF
    The study of the neurovascular network in the brain is important to understand brain functions as well as causes of several brain dysfunctions. Many techniques have been applied to acquire neurovascular data. The Knife-Edge Scanning Microscope (KESM), developed by the Brain Network Lab at Texas A&M University, can generate whole-brain-scale data at submicrometer resolution. The specimen can be stained with different stains, and depending on the type of stain used, the KESM can image different types of microstructures in the brain. The India ink stain allows the neurovascular network in the brain to be imaged. In order to visualize and analyze such large datasets (~ 1.5 TB per brain), a lightweight, web-based mouse brain atlas called the Knife-Edge Scanning Microscope Brain Atlas (KESMBA) was developed in the lab. The atlas serves several whole mouse brain data sets including India ink. The multi-section overlay technique used in the atlas enables 3D visualization of the structural information in the data. To solve the challenging issue of tracing micro-vessels in the brain, in this thesis a semi-automated tracing and analysis method is developed and integrated into the KESM brain atlas. Using the KESMBA interface developed in this thesis, the user can look at the 3D structure of the vessels on the brain atlas and can guide the tracing algorithm. To analyze the vasculature network traced by the user, a data analysis component is also added. This new KESMBA interface is expected to help in quickly tracing and analyzing the vascular network of the brain with minimal manual effort. In order to visualize and analyze such large data sets (~ 1.5 TB per brain), a light-weight, web-based mouse brain atlas called the Knife-Edge Scanning Microscope Brain Atlas (KESMBA) was developed in the lab. The atlas serves several whole mouse brain data sets including India ink. The multi-section overlay technique used in the atlas enables 3D visualization of the structural information in the data. To solve the challenging issue of tracing micro-vessels in the brain, in this thesis a semi-automated tracing and analysis method is developed and integrated into the KESM brain atlas. Using the KESMBA interface developed in this thesis, the user can look at the 3D structure of the vessels on the brain atlas and can guide the tracing algorithm. In order to analyze the vasculature network traced by the user, a data analysis component is also added. This new KESMBA interface is expected to help in quickly tracing and analyzing the vascular network of the brain with minimal manual effort

    Customizable tubular model for n-furcating blood vessels and its application to 3D reconstruction of the cerebrovascular system

    Get PDF
    Understanding the 3D cerebral vascular network is one of the pressing issues impacting the diagnostics of various systemic disorders and is helpful in clinical therapeutic strategies. Unfortunately, the existing software in the radiological workstation does not meet the expectations of radiologists who require a computerized system for detailed, quantitative analysis of the human cerebrovascular system in 3D and a standardized geometric description of its components. In this study, we show a method that uses 3D image data from magnetic resonance imaging with contrast to create a geometrical reconstruction of the vessels and a parametric description of the reconstructed segments of the vessels. First, the method isolates the vascular system using controlled morphological growing and performs skeleton extraction and optimization. Then, around the optimized skeleton branches, it creates tubular objects optimized for quality and accuracy of matching with the originally isolated vascular data. Finally, it optimizes the joints on n-furcating vessel segments. As a result, the algorithm gives a complete description of shape, position in space, position relative to other segments, and other anatomical structures of each cerebrovascular system segment. Our method is highly customizable and in principle allows reconstructing vascular structures from any 2D or 3D data. The algorithm solves shortcomings of currently available methods including failures to reconstruct the vessel mesh in the proximity of junctions and is free of mesh collisions in high curvature vessels. It also introduces a number of optimizations in the vessel skeletonization leading to a more smooth and more accurate model of the vessel network. We have tested the method on 20 datasets from the public magnetic resonance angiography image database and show that the method allows for repeatable and robust segmentation of the vessel network and allows to compute vascular lateralization indices. Graphical abstract: [Figure not available: see fulltext.]</p

    Integrating images from a moveable tracked display of three-dimensional data

    Get PDF
    abstract: This paper describes a novel method for displaying data obtained by three-dimensional medical imaging, by which the position and orientation of a freely movable screen are optically tracked and used in real time to select the current slice from the data set for presentation. With this method, which we call a “freely moving in-situ medical image”, the screen and imaged data are registered to a common coordinate system in space external to the user, at adjustable scale, and are available for free exploration. The three-dimensional image data occupy empty space, as if an invisible patient is being sliced by the moving screen. A behavioral study using real computed tomography lung vessel data established the superiority of the in situ display over a control condition with the same free exploration, but displaying data on a fixed screen (ex situ), with respect to accuracy in the task of tracing along a vessel and reporting spatial relations between vessel structures. A “freely moving in-situ medical image” display appears from these measures to promote spatial navigation and understanding of medical data.The electronic version of this article is the complete one and can be found online at: http://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0069-
    • …
    corecore