3 research outputs found

    Fast interactive 2D and 3D segmentation tools.

    Get PDF
    by Kevin Chun-Ho Wong.Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.Includes bibliographical references (leaves 74-79).Abstract also in Chinese.Chinese Abstract --- p.vAbstract --- p.viAcknowledgements --- p.viiChapter 1 --- Introduction --- p.1Chapter 2 --- Prior Work : Image Segmentation Techniques --- p.3Chapter 2.1 --- Introduction to Image Segmentation --- p.4Chapter 2.2 --- Region Based Segmentation --- p.5Chapter 2.2.1 --- Boundary Based vs Region Based --- p.5Chapter 2.2.2 --- Region growing --- p.5Chapter 2.2.3 --- Integrating Region Based and Edge Detection --- p.6Chapter 2.2.4 --- Watershed Based Methods --- p.8Chapter 2.3 --- Fuzzy Set Theory in Segmentation --- p.8Chapter 2.3.1 --- Fuzzy Geometry Concept --- p.8Chapter 2.3.2 --- Fuzzy C-Means (FCM) Clustering --- p.9Chapter 2.4 --- Canny edge filter with contour following --- p.11Chapter 2.5 --- Pyramid based Fast Curve Extraction --- p.12Chapter 2.6 --- Curve Extraction with Multi-Resolution Fourier transformation --- p.13Chapter 2.7 --- User interfaces for Image Segmentation --- p.13Chapter 2.7.1 --- Intelligent Scissors --- p.14Chapter 2.7.2 --- Magic Wands --- p.16Chapter 3 --- Prior Work : Active Contours Model (Snakes) --- p.17Chapter 3.1 --- Introduction to Active Contour Model --- p.18Chapter 3.2 --- Variants and Extensions of Snakes --- p.19Chapter 3.2.1 --- Balloons --- p.20Chapter 3.2.2 --- Robust Dual Active Contour --- p.21Chapter 3.2.3 --- Gradient Vector Flow Snakes --- p.22Chapter 3.2.4 --- Energy Minimization using Dynamic Programming with pres- ence of hard constraints --- p.23Chapter 3.3 --- Conclusions --- p.25Chapter 4 --- Slimmed Graph --- p.26Chapter 4.1 --- BSP-based image analysis --- p.27Chapter 4.2 --- Split Line Selection --- p.29Chapter 4.3 --- Split Line Selection with Summed Area Table --- p.29Chapter 4.4 --- Neighbor blocks --- p.31Chapter 4.5 --- Slimmed Graph Generation --- p.32Chapter 4.6 --- Time Complexity --- p.35Chapter 4.7 --- Results and Conclusions --- p.36Chapter 5 --- Fast Intelligent Scissor --- p.38Chapter 5.1 --- Background --- p.39Chapter 5.2 --- Motivation of Fast Intelligent Scissors --- p.39Chapter 5.3 --- Main idea of Fast Intelligent Scissors --- p.40Chapter 5.3.1 --- Node position and Cost function --- p.41Chapter 5.4 --- Implementation and Results --- p.42Chapter 5.5 --- Conclusions --- p.43Chapter 6 --- 3D Contour Detection: Volume Cutting --- p.50Chapter 6.1 --- Interactive Volume Cutting with the intelligent scissors --- p.51Chapter 6.2 --- Contour Selection --- p.52Chapter 6.2.1 --- 3D Intelligent Scissors --- p.53Chapter 6.2.2 --- Dijkstra's algorithm --- p.54Chapter 6.3 --- 3D Volume Cutting --- p.54Chapter 6.3.1 --- Cost function for the cutting surface --- p.55Chapter 6.3.2 --- "Continuity function (x,y, z) " --- p.59Chapter 6.3.3 --- Finding the cutting surface --- p.61Chapter 6.3.4 --- Topological problems for the volume cutting --- p.61Chapter 6.3.5 --- Assumptions for the well-conditional contour used in our algo- rithm --- p.62Chapter 6.4 --- Implementation and Results --- p.64Chapter 6.5 --- Conclusions --- p.64Chapter 7 --- Conclusions --- p.71Chapter 7.1 --- Contributions --- p.71Chapter 7.2 --- Future Work --- p.72Chapter 7.2.1 --- Real-time interactive tools with Slimmed Graph --- p.72Chapter 7.2.2 --- 3D slimmed graph --- p.72Chapter 7.2.3 --- Cartoon Film Generation System --- p.7

    Visualisation interactive de données volumiques texturées pour la détection supervisée de failles en imagerie sismique

    Get PDF
    L'interprétation des images sismiques tridimensionnelles est une étape clé de léxploration pétrolière. Les enjeux de cette activité sont de produire un modèle des différentes structures, telles que les failles, incluses au sein des données sismiques. Les objectifs multiples de cette thèse, menée en partenariat avec le groupe TOTAL, sont de concevoir, d'implémenter et de valider des techniques innovantes de visualisation et d'interaction aidant à la détection et à la modélisation des failles, supervisée par un interprétateur. Bien que spécifiquement développés à destination d'un contexte opérationnel particulier, les outils proposés s'appliquent plus généralement à lénsemble des données volumiques texturées ainsi qu'à la segmentation manuelle de structures tridimensionnelles. Ils s'inscrivent dans un cadre théorique et méthodologique nécessairement pluridisciplinaire qui concerne des domaines aussi divers que la psychologie expérimentale, l'ingénierie cognitive, la réalité virtuelle ou encore l'interaction homme-machine.The interpretation of seismic 3D imagery is a step key leading to hydrocarbon exploitation. The challenge of this activity is to produce a model of several geological structures, like faults, embedded in seismic dataset. The aim of this thesis, carried out with TOTAL company, is to elaborate, design and evaluate new techniques of visualization and interaction for fault detection and modelization supervised by a human expert. Even if specially designed for an operational context, our tools are also dedicated to other volumetric data and manual segmentation of 3D structures. The theorical foundation of our works are based on a pluridisciplinary approach and concerns several scientific fields like experimental psychology, cognitive engineering, virtual reality or human computer interaction

    CATHI - Catheter Instruction System : Ein virtuelles Ausbildungs- und Trainingssystem fĂĽr Kardiologen

    Get PDF
    In den letzten Jahren ist die Anzahl der minimalinvasiven kardiologischen Eingriffe stark gestiegen. Zwar haben sich die Instrumente immer weiter verbessert, die Ausbildung folgt aber immer noch dem traditionellen Schüler-Lehrer-Prinzip am Patienten. CathI ist ein neues Simulationssystem, das nicht nur die Hand-Augenkoordination trainiert sondern auch den Umgang mit allen bei der Intervention verwendeten Instrumenten. Der Auszubildende findet in der Simulationsumgebung die originalen, unter Umständen leicht modifizierten Instrumente vor, wie beispielsweise Führungsdraht, Kontrastmittelspritze, Fußpedale oder Kontrolleinheiten für die Röntgenanlage. Wie im Katheterlabor wird die Prozedur über mehrere Röntgenmonitore überwacht. Das System basiert auf PC-Technologie und erreicht mit 12.5 berechneten Bildern pro Sekunde die selben Bildraten wie reale Röntgenanlagen
    corecore