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摘要 

長久巳來，圖像切割（Image Segmentation)都是電腦 

缘圖學和圖像處理學的研究熱點。研究人員設計了很多又快 

又準確的圖像切割技術。可是，這些技術至今仍未能滿足電 

腦餘圖工業的發展。今時今日，只是一張普通質素的數碼相 

片巳佔用了數以百萬計的記憶位元，而數碼映片和體數據 

(Volume data)的容量便更加龐大了。傳統的圖像切割技術 

並不能有效處理這些龐大的圖像數據。因此，設計一些更快 

更準確的二維及三維的圖像切割技術是很重要的。 

本論文主要提出兩項圖像切割技術的新貢獻，第一項是 

利用二元空間分割技術產生出來的圖來加快智能剪刀 

(Intelligent Scissors)的運作。主要的技巧是利用前置 

處理程序把圖像切割運算中所遇到的多餘數據除去。這個前 

置處理程序在最差情况下時間複雜度是0(11
2
〃），註明我們建 

議的方法是非常有效的。 

第二項主要貢獻是我們應用二維圖像切割工具來解決三 

維體數據的切割問題。我們提出一方法矛 'J用虛擬真實環境在 

體數據的表面晝上線段，再利用一個切面評估演算法把適當 

的體數據取出。透過這工具，我們便能更容易創造更多的體 

數據模型了。 
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Abstract 

The research of Image segmentation has long been a difficult problem in the field of 

Computer Graphics and Image Processing. Many researchers have designed various 

image segmentation techniques to extract objects accurately and rapidly. However, 

these algorithms still cannot fulfill the requirement of rapidly developing graphics 

industries. Nowadays, a digital image with reasonable quality can frequently be very 

large. The storage requirements of digital video and volume data (3D image) are 

extremely large. Traditional segmentation algorithms are not efficient enough to 

handle these huge image data sets. Therefore, it is important to design faster and 

more accurate 2D and 3D segmentation techniques. 

In this thesis, there are two major contributions in terms of 2D and 3D segmen-

tation. One major contribution is that we propose a speedup version of an existing 

segmentation tool - Intelligent Scissors, which exploits a graph generated by the BSP 

(binary space partition) technique. The key is that a preprocessing scheme is used to 

filter out the redundant data in order to reduce the computation in the segmentation 

phase. The preprocessing scheme we propose is very efficient and its worst case time 

complexity is O(n2), where n is the number of nodes(pixels) in the graph. 

A second significant contribution is that we extend the use of 2D interactive 

segmentation tools to solve the 3D volume data segmentation problem. We propose 

a freehand volume cutter to select a contour laying on an iso-surface contained in the 

volume data within a virtual environment. A cutting surface estimation algorithm is 

also proposed in order to determine the region of interest in the volume. By using 

this tool, one can naturally visualize many new volumetric data models. 
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Chapter 1 

Introduction 

In computer graphics and image processing, various contour detection techniques 

have been developed and many researchers have proved their feasibility. Two useful 

techniques are Active Contours (also called Snakes) [19] and Intelligent Scissors [24 

33. 

Active contours proposed by Kass et al [19] are deformable polyline models used 

to locate object boundaries in an image. The contour is first placed near the desired 

edge manually, then this contour will gradually move to the edge driven by an energy 

minimization process. The continuity, smoothness and fitness of the contour is super-

vised by an energy equation. Although, the snake can outline the object's boundary 

and provide a good result in a noise free image, its initialization-sensitive nature leads 

to an unstable performance when it is applied to a noisy image. 

The Intelligent Scissors [24] proposed by Mortensen and Barrett is another tech-

nique that can accurately obtain the object's boundary in the image. However, a 

certain extent of user intervention is required. The kernel of this algorithm is a 

shortest path searching procedure. The image is treated as a graph and the pixels are 

treated as the nodes. In this algorithm, the two end-points of a contour are defined by 

the user and the resultant contour is computed by finding the shortest path between 

the given two end points. 

In our research, two interesting problems are concerned. One is how to segment 

the desired object from the given image of natural scene efficiently, accurately and in 

1 



Chapter 1. Introduction 2 

a robust manner. Another is how to extract a volume of interest from an existing 3D 

volume data correctly. Some of our ideas used to solve these problems are inspired 

by the recent contour detection techniques mentioned above. 

At the first stage of our research, we had an indepth review on the current image 

segmentation techniques. In Chapter 2 and 3, these prior works will be discussed in 

detail. In Chapter 2, we will have a brief introduction of the image segmentation 

problem and some of the essential techniques. Chapter 3 introduces the Active Con-

tour Model (Snakes) and its extensions, which has developed rapidly and are broadly 

applied in various areas in recent years. 

At the second stage of our research, we developed a fast interactive image seg-

mentation tool called fast intelligent scissors. In Chapter 4 and 5，we introduce this 

tool and discuss how to extract the object from the given image of natural scene 

efficiently and accurately. In order to speed up the current interactive segmentation 

tool, a slimmed graph is proposed to filter out the redundant data. We will describe 

the generation of the slimmed graph in Chapter 4. In Chapter 5, we discuss how to 

speed up the Intelligent Scissor Algorithm with the slimmed graph technique. 

At the final stage of our research, we extend the idea of 2D intelligent scissor to 

solve the problem of 3D volume editing�In Chapter 6, we suggest a freehand volume 

cutter to select a contour on a volume data surface within a virtual environment. The 

Intelligent Scissors technique we developed provides an accurate and robust tool for 

interactive contour detection. A cutting surface estimation algorithm is also proposed, 

by this, a region of interest in the volume can be determined by one closed contour on 

the surface. We have exploited various algorithms in order to reduce its computational 

complexity. 



Chapter 2 

Prior Work : Image Segmentation 

Techniques 

One of the vital tasks of our research is to study various image segmentation ap-

proaches. In this chapter, a series of segmentation techniques will be discussed. 

Firstly, we will discuss the image segmentation algorithm which have been developed 

in early stage such as Region Based Segmentation, Boundary Based Segmentation, 

Watershed Based Segmentation and Canny Edge Filter with contour following. Sec-

ondly, we will discuss some recent approaches such as Fuzzy C-means Segmentation, 

Pyramid based Fast Curve Extraction and Curve Extraction with Multi-resolution 

Fourier Transformation. Then, we will introduce some interactive segmentation tech-

niques such as Intelligent Scissors and Magic Wands. 

Active Contour Model (Snakes) has been developed rapidly in recent years and 

there are a great number of publications about this techniques. In Chapter 3, we will 

discuss this model and its extensions in more detail. 

3 



Chapter 2. Prior Work : Image Segmentation Techniques 4 

2.1 Introduction to Image Segmentation 

Image Segmentation is a process of grouping homogeneous pixels in an image. This 

process can outline the boundary curves of an desired object in a scene and estimates 

the spline functions of these curves. 

In recent few decades, Image segmentation algorithms have been broadly applied 

in various areas of application such as medical image visualization [34][32][27] (Seg-

mentation of the computed tomography (CT) image or magnetic resonance image 

(MRI)), motion tracking [ll][43] in the movie, image editing [24][12] such as cutting 

and pasting, volume or 3D data [39] [35] segmentation and shape modeling [9][37]. 

The human visual system has an impressive natural talent to extract an identified 

object from the image quickly. However, this is a rather difficult task for the computer 

to handle. The main difficulties include the following points: 

• The photo taken from the real world is always degraded due to noise, low 

contrast and occlusions. 

• The image stored in the computer memory is discrete, disconnected and lossy. 

• The size of image data involved in the computation is usually large and this 

leads to a slow performance. In general, the image segmentation is seldom a 

real time process. 

• The image segmentation is difficult to be performed in a fully automatic manner. 

If no one gives enough information, the computer does not know how detail the 

segmentation should be. For example, if a human face photo is segmented, 

computer may consider the eyes as the desired objects, but user may want to 

extract the whole face. 

In the fields of Image Processing and Computer Graphics, various image segmen-

tation and contour detection methodologies have been developed as well as many 
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researchers have proved their feasibility. In the following sections, these techniques 

will be discussed in detail. 

2.2 Region Based Segmentation 

2.2.1 Boundary Based vs Region Based 

In general, most of image segmentation techniques can be classified into two classes, 

boundary based approaches and region based approaches. Boundary based approaches 

segment objects on the basis of their profiles and edge map. Some well known ex-

amples are Snakes [20], Contour Following [10][18] and Hough Transform [40]. The 

other class of approaches is the region based segmentation. In region based analysis, 

the image will be subdivided into many smaller regions. In each sub-regions, the 

local feature is sufficiently defined. Then, the object in the image will be extracted 

by identifying various regions in an image which have similar features. 

In some particular problems, the hybrid or mixed methods such as Region-based 

method with edge detection as well as Watershed based method are designed in order 

to achieve better segmentation performance. 

In this section, we will introduce some region based segmentation techniques as 

well as its variants. 

2.2.2 Region growing 

One approach of the region based segmentation techniques is Region Growing [7 . 

There are two key steps in this approach: region splitting and region merging . In the 

step of region splitting, the given image will be divided into several atomic regions 

of pixels with constant grey levels. In the step of region merging, similar adjoined 

regions will be merged until the adjoined regions become sufficiently distinguishable. 
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Figure 1(a), 1(b) and 1(c) show how the image is split into atomic regions. The grey 

value of the pixels is in the range between 0.0 to 1.0. In this example, the quad 

tree based region splitting is used. If the particular subimage is not a homogeneous 

region, it will be divided into four parts evenly. This process will go on recursively. 

By quadtree based region splitting, the atomic regions can be obtained efficiently due 

to the constant time computation of the position of the split lines. Figure 1(d) shows 

the step of region merging. Two adjoined regions will be merged if they have similar 

feature (average grey values). After the region merging, the desired object or different 

spatial regions in the image can be segmented out. 

Comparing with the boundary-based one, region based approach has a larger error 

tolerance. Nevertheless, the time complexity of the region based algorithms is often 

quite large. Also, region based approach always produces a over-segmented results. 

2.2.3 Integrating Region Based and Edge Detection 

If a natural scene is treated by region growing algorithm, over segmented results are 

often obtained. To relieve this problem, Pavlidis and Liow [26] proposed a method 

integrating region growing and edge detection. In the first step, they use region 

growing to produce a over segmented results. In the second step, the boundaries 

in the over segmented picture will be cancelled. Then, they attempt to modify the 

shape of the boundaries to improve the result. They use edge detection and the 

proposed cost function to control the shape and the strength of the region boundary. 

The algorithm also penalizes the long straight artifact boundaries. They modified 

the shape of the object boundary by maximizing the cost function and this process 

is similar to the energy minimization in the active contour model [20 . 
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Figure 1: Explanations of Region Growing algorithm. 
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2.2.4 Watershed Based Methods 

The key idea of the watershed algorithm [38][17] is to consider the strength of each 

edge pixel as an altitude. Hence, the image becomes a 3D surface with the homo-

geneous regions appearing as basins. Then, the watershed lines will be constructed 

by flooding this 3D surface. When the floods from adjoined region meet, dams are 

constructed to prevent merging. After the immersion is completed, the boundary of 

the segmented regions can be constructed by the dams. 

2.3 Fuzzy Set Theory in Segmentation 

2.3.1 Fuzzy Geometry Concept 

In many image processing applications, digital geometry often plays a vital role in the 

calculation of geometrical measures in the image such as area, perimeter, diameter of 

the objects. However, in some problems of computer vision such as pattern recognition 

and image segmentation, the object boundaries appear ill-defined and non-crisp in 

digital geometry. It is much better to consider the geometrical measurements as fuzzy 

set. 

To apply fuzzy set theory into image processing, we should use the membership 

function to measure the image. Let us use an example to show how to estimate the 

area under fuzzy geometry. Firstly, we define the membership function //p(A) for the 

pixels with grey value p as follows: 

‘ 1 p > A 
/ ^ ( A ) = ' — (1) 

0 p < A 
\ 

The pixel p is active when its grey value is larger than the threshold. By this 

definition, the object in the image will have different values when different threshold 
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value are given, (as shown in Figure 2). To describe its area under fuzzy geometry, 

we use the membership function A(A), where 

A(A) = E Mp(A) (2) 
Vpixel 

In the example shown in Figure 2 , A(A) is calculated as follow: 

36 A < 0 

27 0 < A < 0.2 

A{X) = 12 0.2 < A < 0.7 (3) 

7 0.7 < A < 1.0 

0 A > 1.0 

In next section, we will discuss a general approach in fuzzy segmentation called 

fuzzy C-means clustering. 

2.3.2 Fuzzy C-Means (FCM) Clustering 

The segmentation algorithm with fuzzy C-means clustering [22] included two main 

parts. The first part is to analyze the histogram in order to partition the histogram 

into various classes of intervals. Then, a great amount of pixels in the image can be 

grouped according to the partitioned color space. The second part is to classify the 

remained unclassified pixels by Fuzzy C-means clustering. 

The overall segmentation algorithm can be summarized in the following steps: 

1. For each color component (R,G,B) of the image, build a histogram. 

2. For each histogram, find out their most predominant peaks or valleys by scale-

space analysis. 
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Figure 2: Area measurement under fuzzy digital geometry. 
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3. Build an interval tree of zero crossing in second derivative for each histogram 

so that the x axis along the histogram will be segmented into different classes. 

4. Combine the R,G,B histograms to build the segmented color space. 

5. If each color component lies within the maxima interval, that pixel is considered 

classified. 

6. Any unclassified, pixel will be classified by the fuzzy c-Means techniques. 

The fuzzy c-Means technique attempts to cluster a pixel by finding the local 

minima of the sum of squared error. A pixel is assigned to the closest classified class 

of which the fuzzy membership has a maximum value. 

There are two disadvantages in the FCM segmentation. Firstly, this method 

always manages with regions which have vague boundaries and shapes. Secondly, 

FCM segmentation is a time consuming process due to great amount of unclassified 

pixels. 

2.4 Canny edge filter with contour following 

Canny edge filter is a well-known technique that finds the edge pixels by convolution. 

It can be implemented easily and its computation is fast when parallel programming 

is applied. However, the polylines of the boundaries cannot be directly obtained. To 

find the control points of the boundaries, a further contour following approach [10][18 

should be exploited. The boundary is tracked by performing the 8-connectivity test 

for each edge pixels. A polyline segment will be assigned for each pair of adjoined 

edge pixels. One of the disadvantages is the curve generated by this technique is not 

smooth enough, since there are only 8 possible directions of the polyline boundary : 

0� ,45� ,90� ,135� ,180� ,225� ,270�and 315° 
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2.5 Pyramid based Fast Curve Extraction 

Besides producing a non-smooth curve, contour following method always generates a 

fragmented resulted curve even though there exists only a little noise along the object 

boundary. To lessen the noise effect, we can analyze the image in various resolution, 

Based on this idea, Connelly [5] designed a simple curve extraction process called 

Fast Curve Extraction. 

The curve extraction is performed in the pyramid data structure which is a stack 

of arrays representing the image at decreasing resolution. A given level of stack has 

twice the resolution in each dimension as the upper level. To speed up the image 

analysis, this algorithm is designed as a parallel process. The overall algorithm can 

be summarized in the following steps: 

1. To generate different resolution images from the original one, we can recursively 

apply the image operations such as sub-sampling or smoothing. 

2. We can apply the thinning operator in the edge map of the image. And then, 

we connect the neighbor points with local maxima to create the trend curve 

(similar to contour following). 

3. For each level of resolution of the image, we retrieve the trend contours in 

parallel. 

4. Combine the trend curves of all level of images to produce the resulted main 

curve. We can set the weighting values for each level of curves. These weights 

can be determined in terms ofbackground, homogeneity or the subjectivejudge-

ments of users. 
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2.6 Curve Extraction with Multi-Resolution Fourier 

transformation 

Calway [2] implements another multi-resolution Curve Extraction method called Curve 

Extraction with multi-resolution Fourier transformation . 

The key idea of this algorithm is to convert the image into a set of straight line 

segments which vary in size and orientation. As a result, the boundaries in the image 

can be clearly outlined by these segments. Of course, we can combine these segment 

into curves by using simple curvature measurement method. 

This method is performed by a fine-to-coarse region subdivision scheme. After 

the complete subdivision, the image will be converted into a set of square blocks vary 

in size. Each block contains three local featured parameters to model a straight line. 

They are scale index (size of the block), orientation (direction of the line model) and 

offset (offset position of the line). The estimation of these parameters can be achieved 

by Fourier transformation. 

During the subdivision, if a block contains the feature cannot be modeled by a 

straight line, the block will be subdivided into four sub-parts evenly. This test will 

be performed recursively until every block contains a simple local feature (a straight 

line or a homogeneous region). 

Since no initialization procedure is involved in this method, the detection is more 

stable and initialization invariant. However, this analysis is mainly depended on the 

rectangular grids, so the curve detected is not very smooth. 

2.7 User interfaces for Image Segmentation 

In this part, two famous interactive image segmentation will be discussed. They are 

intelligent Scissors and Magic Wands. 
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2.7.1 Intelligent Scissors 

The Intelligent Scissors [24] is an interactive technique by which the object's boundary 

in the image can be obtained in an accurate and robust manner. The main kernel of 

this algorithm is a shortest path searching procedure. The image is considered as a 

graph and the pixels are considered as nodes. In this algorithm, the two end-points 

of the boundary contour is defined by the user and the resulted contour is computed 

by finding the shortest path between the points. 

The main kernel of Intelligent Scissors is a global optimal path searching algorithm. 

It is implemented using the Dijkstra's algorithm [6]. The definition of local costs 

along the edge depend on the 2D gradient at the pixel positions. In [33], the strength 

indicator G{x^ y) of the pixel at (x,y) is formulated as the following equation: 

^， y ) = |W(z，")l � 

where V is the gradient operator and the pixel at (x, y) is preferable if its G(x^ y) 

is large enough. Thus the local cost between pixels at (xi,yi)and {x2^ y2) can be 

formulated as 

Cost{{xi, yi), (x2, y2)) 二（maa;v^G^(j:, y)) - ]^{G{xi,yi) + G{x2, y2)) (5) 

The Dijkstra algorithm shown in Algorithm 1 is basically a 2D dynamic program 

which finds the suboptimal paths from all pixels to the seed point. In practical 

application, the search need not be completed, and it can be stopped whenever a 

path reaches the position selected by the user (goal point). If the seed point or the 

cost values on the edges is changed, the search must be executed again. 
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Definitions: 
s Seed point. 
L List of active nodes. 
B(ii) Back pointer from {u) indicates 

the potential optimal path. 
P(^) TRUE if node u is made permanent. 
T(w) Total cost from u to s. 
c(w, v) Local cost of edge u^v. 
min(L) Get the node with minimum total cost 

from L and remove it. 
Algorithm: 

P( î) f - FALSE for all u 
T(s) — 0, T{u) — 00 for u 7̂  s 
L <— {all nodes} 
while L 7̂  0 do 

q — min(L) 
P(q) f - TRUE 
for each edge q^v s.t. P(i;)=FALSE do 

ifT{v) > T(^) + c{q,v) then 
T(^)^T(g )+c (^ ,^ ; ) 
B(”）— q 

end if 
end for 

end while 

Algorithm 1: Dijkstra's algorithm for 2D shortest path searching. 
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2.7.2 Magic Wands 

This tool has appeared in several famous image processing application such as Photo-

Shop and GIMP for the purpose of the object segmentation. By using Magic Wand, 

the homogeneous region in the image can be specified through a mouse click to select 

the seed point. 

Magic Wand uses the color similarity to estimate the object boundary. Thus, this 

tool is not suitable for processing in noisy image. If we can first use the intelligent 

scissors to outline the partial boundary of an object, and then, use the Magic Wand 

to estimate the resulted boundary; the accuracy of the resulted outline can be greatly 

improved. 



Chapter 3 

Prior Work : Active Contours Model 

(Snakes) 

Snakes or active contours proposed by Terzopoulos, Kass and Witkin [20] are de-

formable contours (a polyline with a set of control points) used to locate object 

boundaries in an image. The contour is firstly placed near the desired edge by some 

initialization process, then this contour will gradually move to the edge driven by the 

external image force. Many previous experiments by other researchers [14] [24] [35 

3] have shown that snake and its variants are powerful tools in segmenting complex 

contours shape in a noisy image. 

17 
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3.1 Introduction to Active Contour Model 

In the paper of Kass et al [20], the traditional snake is defined as a curve t>(<s)= 

a:(5), y(5)], where the normalized arc-length parameter 5 G [0,1] . The movement of 

the snake is influenced by minimizing the energy function Esnake as 

Esnake = [ Eint{v{s)) + Eext{v{s))ds 
Jo 

where 

Eint = lf;iK(<S)|2 + w;2b"("5)|2 

^e.t = -|V(G. (x ,y )* / (x ,y ) )|2 (6) 

In Equation 6, Eî t represents the internal energy of the contour due to bending or 

discontinuities. Wi and W2 are weighting parameters controlling the elasticity and 

rigidity of the contour. The external energy Eext is influenced by the image force 

which is a function of image information such as edges, lines and terminations. A 

gray level image is denoted by / (x , y) as well as a 2D Gaussian function with the 

standard deviation a denoted by G{x, y) is used to blur out the noise in the given 

image information. 

The main kernel of active contour model implementation is to find out the shape 

of contour which contains minimum internal and external energy. There are four 

steps in the energy minimization algorithm: 

• Consider the image domain as a continuous plane and set up a variational 

integral (energy function). 

• Derive the Euler equation from the energy functions 
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• Discretize the Euler equation by converting the derivates into finite differences. 

• Solve the discrete equation iteratively until it converges. 

Theoretically, the aim of the above four steps is to minimize a mathematical 

function. Physically, the contour on the image will move their control points to the 

positions with lower energy field. Hence, the object on the image can be extracted 

by this deforming contour. 

There are four vital advantages of the original active contour model: 

• Certain extend of error tolerance 

• Boundary continuity preservation 

• Flexibility on the boundary smoothness control 

• Good performance in automatic segmentation 

Due to these advantages, the snake model can be broadly applied in various ap-

plications; especially in segmentation of magnetic resonance images [31] and motion 

tracking [13]. 

3.2 Variants and Extensions of Snakes 

In the following sections, we will introduce some of the significant developments of the 

active contours model. These techniques included balloons [4], dual active contours 

15], gradient vector flow (GVF) snakes [30][44] and active contours with dynamic 

programming [l][41]. Balloons, dual active contours and GVF snakes aim to achieve 

a stronger error tolerance in the object segmentation as well as better contour ini-

tialization. Dynamic programming aims to improve the stability and efficiency in the 

energy minimization process. The motivations and main features of these techniques 

will be discussed. 
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3.2.1 Balloons 

Aims and Motivations 

In 1991, Cohen [4] proposed a new active contour model called Balloons. When 

this model is applied to a 2D image, its contour will inflate gradually and being 

attracted to the high gradient pixels. By its inflating feature, balloon model can 

achieve a result that is much less sensitive to the initial conditions comparing to the 

traditional active contour model. 

Main idea 

In general, the active contours model may shrink its boundary shape into a point 

due to the minimization of the internal energy term Ei^t- To avoid this shrinking 

property, an internal pressure pushing the contour outward is involved. Cohen has 

suggested this pressure force as F̂ ressure 

Fpressure — A în(s) (7) 

where n(s) is outward pointing unit normal vector to the contour at point f(5), ki 

is the magnitude of this force which is usually positive. The internal pressure force 

prevent the curve from shrinking into a point and being trapped by isolated edge 

points caused by noise. 

Advantages and Drawback 

By the using the pressure force on the curve, balloon model enables the user to 

achieve the promising results even though the given initial guess of the curve is far 

from the desired solution. However, if the image force is not strong enough, the curve 

will not be attracted by the edge point due to the additional pressure. Hence, the user 

should select the parameters of the image force and internal pressure in the energy 

equation carefully. 
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3.2.2 Robust Dual Active Contour 

Aims and Motivations 

Bad choices of an initial contour and other parameters will cause an incorrect 

segmentation results. In order to increase the robustness of the active contour model 

and relieve the problem of sensitive initialization, Gunn and Nixon [15] propose a dual 

active contour algorithm which contains both contracting and inflating contours. 

Main idea 

In dual active contour model, there are one contour contracting from outside and 

one contour inflating from inside of the desired boundary. These contours will refine 

their shapes under the minimization process of the scale invariant internal energy 

function which retains the continuity and smoothness constraints. When two contours 

become stationary, the contour with the higher energy will move to the other contour 

with an adaptive driving force. This process will go on until these two contours reach 

equilibrium. 

Advantages and Drawback 

By the dual active contour, the sensitivity to initialization can be greatly reduced. 

Comparing the two contours during energy minimization, the weak minima can be 

rejected easily and the more accuracy results can be obtained in a robust manner. 

On the other hand, by the use of the adaptive driving force, the contour model can 

extract different degrees of minima (potential resulted curves) without the need to 

modify its parameters. 

Since two initial contours (contracting and inflating) are used, the dual active 

contour works ambiguously when some special topological problems are treated. For 

examples, using the dual contours model to detect the open boundary will results in 

a closed loop. Moreover, the wrong selection of an inner contour will lead to a false 

result. 
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3.2.3 Gradient Vector Flow Snakes 

Aims and Motivations 

In [30], Xu and Prince indicate two important difficulties in the design and imple-

mentation of active contour model. First, the initial contour given by the users must, 

in general, be close to the true boundary otherwise it will likely converge to an unde-

sired result. Second, active contours have poor convergence to boundary concavities. 

To relieve these problems, a new active contour model with Gradient Vector Flow is 

proposed. 

Main idea 

Gradient Vector Flow (GVF) is a new type of external force for active contour 

model. This flow is computed over the image domain as a diffusion of the gradient 

vectors of a grey-level edge map. A GVF field V{x^ y) is defined as the equilibrium 

solution of the following system of partial differential equations 

• : t �= � � - v �— ( y — v / )|v /|2 (8) 

where ^^(：广’力)denotes the partial derivative of V(x, y, t) with respect to time t. 

The coefficient fismooth governs the level of smoothing of the field near the boundaries. 

•2 = & + 吞 is the Laplacian operator, f is the edge map derived from the grey 

level image I{x^ y) and its values can be computed by conventional edge detector. 

In the original energy minimization process, the following Euler equation derived 

from Equation 6 must be satisfied. 

w,v"{s) - W2v"Xs) - VEe,t = 0 (9) 

To apply GVF in the active contour model, we only need to replace the terms 

—VEext by the GVF field 己乂(|‘仏玄)shown in Equation 8. Then the Euler equation will 

become 
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t^lt;"(4 - ^ ^ 2 ” " � ( � -f ^ s m o o t h W + (V - V / ) | V / r = 0 (10) 

To find the solution of the curve f(5), we just consider it as a function of time 

v(s^ t) and solve the following partial differential equation: 

^ o2 04 
^V(S, t) = m£^v(s, t) - W2^v{s, t) — fismoothV'V + (V — Vf)|Vf|' (11) 

Refer to [20], this equation can be discretized and solved iteratively until it con-

verges using some numerical methods or dynamic programming approaches mentioned 

in [1 . 

Features 

GVF snake works especially well when it is applied to fit the boundary with high 

concavity. Its extension, generalized GVF snakes [44] , also improves its convergence 

into long, thin boundary indentations and shows the superior performance on medical 

images segmentations. 

3.2.4 Energy Minimization using Dynamic Programming with 

presence of hard constraints 

Aims and Motivations 

In the energy minimization of active contour, the following problems always ap-

pear: 

• Since there is no hard constraint for the interdistance of the points on the 

contours, it is not surprised to see points along the contour clustering into a 

dense structure at certain places. 



Chapter 3. Prior Work : Active Contours Model (Snakes) 24 

• In the original minimization, there is a need to calculate the high -order deriva-

tives with the discrete image information. Errors often occur and may lead the 

contours to have unstable behavior. 

To solve these problems and improve the performance of the algorithm, Amini 

and et aL[l] present a stable energy minimization algorithm based on dynamic pro-

gramming with the presence of hard constraints. 

Main idea 

The proposed dynamic programming is accomplished by filling the 3D array 

Et(i,j,k) iteratively. The computation of the array values is based on the following 

equations which is derived from the original active contours energy function (Equation 

6). 

Et{i + lJ,k) = mino<rn<N{Et{i, k, m)} + Eext{vi 0 k) 

+ l{wi^i\vi®k-Vi. i®m\^) (12) 

+ W2,i\vi^i © j — 2vi ® k + Vi^i ® m 

where 

Vi : the positions of the control points of the active contours in z'," iteration. 

� :t h e operator for ”i, V { � k indicates the k̂ ^ neighbor choice (possible moves) of 
Vi. 

N : the number of possible moves at each iteration and 0 < j , m, k < N. 

Eext - the external energy term. 

«；1，W2 ： weighting parameters controlling the elasticity and rigidity of the contour. 

As i increases, the values of Et will tend to the minimum energy value. On the 

other hand, to avoid the control points of the contour being placed too close, some 
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hard constraints can be used to control the lower bound of their interdistances. In 

each iteration, if there does not exist a minimum satisfying the constraint, then the 

algorithm will terminate. 

3.3 Conclusions 

In these two chapters (chapter 2 and 3), we have discussed various image segmen-

tation techniques. The purpose of developing these techniques is to improve the 

performance, accurate and robustness of the object extraction. From the review, we 

can easily notice that extracting the object interactively can provide the most accu-

rate segmentation result. However, most of these traditional techniques are not fast 

enough to be applied in interactive tools since they always require exhaustive com-

putation. One of the bottleneck is that these techniques always treat the image as a 

huge 2D array and analyze the image pixel by pixel. In order to relieve this problem, 

we propose a new data structure called Slimmed Graph to represent an image instead 

of 2D array. Fast segmentation can be achieved when the boundary computation is 

performed on this slimmed data structure. In the following chapter, we describe this 

new data structure in detail. 



Chapter 4 

Slimmed Graph 

Slimmed Graph provides a new data structure to represent the profile of the image. 

By this, the computation complexity involved in the image analysis can be greatly 

reduced. In this chapter, a slimmed graph generation algorithm with worst case time 

complexity of 0(ni") is introduced. 

26 
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In the slimmed graph, each node represents a sub-region of the image. The set 

of nodes representing the adjoined plain regions will be grouped, and more nodes are 

needed to represent an edge region (a region with high gradient). 

The node distribution can be achieved by the BSP (Binary Space Partition) men-

tioned in Section 4.1. In this process, a certain amount of split lines will be used 

to separate the image into blocks. With the split lines selection scheme proposed in 

Section 4.2 and 4.3, more tiny blocks will be generated near the region with higher 

gradient. Another problem in the slimmed graph generation is how to add the edges 

between two neighbor nodes and assigning the cost value to the edge. Section 4.4 dis-

cusses how to determine whether two nodes are neighbors. In section 4.5, the overall 

slimmed graph generation algorithm is shown. 

4.1 BSP-based image analysis 

Using BSP-based (Binary Space Partition) image analysis, we separate the image 

into many smaller sub-regions by vertical and horizontal split lines. Eventually, a 

block diagram (a diagram of segmented regions) can be generated (Figure 3a-d). 

The aim of the splitting process is to find out the plain block and the edge block 

of the image. Plain block is the rectangular region with less gradient, e.g. a region 

containing same pixel values. An edge block is a region with high image gradient, e.g. 

a region containing sharp edges. Then, a slimmed graph can be created (Figure 3-f) 

by associating each block with a node and connecting each pair of neighbor blocks 

with an edge. 
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Figure 3: A simple example of slimmed graph generation. 
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4.2 Split Line Selection 

Function G{x^ y) is the pixel gradient at pixel (x, y). The value of G{x^ y) is between 

0.0 to 1.0. M and N are the width and height of the interested sub-region respectively. 

Sx and Sy are the sum of the grey values along the vertical and horizontal lines 

respectively. 
N-1 

s A i > T M M (13) 

j=o 

M-1 

4 ( 0 = E G { j , i ) ( 1 4 ) 

j=o 

The position of the split line is determined by the following criteria. 

If M > N, the vertical split line from {xs^ 0) to (x^, N) is selected, 

where 
Xs = argmaxi{\^Sx{i)\) + 1 (15) 

argmaxi{f[i)) returns the argument i if Vj, f{i) > f ( j ) . 

Otherwise, a horizontal split line from (0, ys) to (M, y^) is selected, 

where 

Vs = argmaxi{\ASy{i)\) + 1 (16) 

Xs is between 1 and M — 1 while ŷ  is between 1 and N — 1. Figure 3-b shows 

how the split line is chosen by this criteria. 

4.3 Split Line Selection with Summed Area Table 

A faster computation of A5a;(z) and A5'y(z) can be achieved by the summed area 

table techniques. Let A{x^ y) be the precomputed summed area function where 



Chapter 4. Slimmed Graph 30 

• , _ | E L o E ? = o G ( z ’ B 0 < . < l ^ , o < . < i / (17) 

0 otherwise 
\ 

Suppose that the sub-region D is considered. The top-left and bottom-right corner 

positions of D are [leftD^ topn) and [righto^ hoUouiD)- Then, 

Sa:{i) 二 A( ‘ ’ hoUomB) + A{i - l,topD — 1) — A{i - l,bottomD) — A(i, topD - 1) (18) 

^ ( z ) = A{rightD, i) + A{leftD - l,z — 1) - A[rightD, i — 1) - A{lefto - 1 ,0 (19) 

And 

A5^(z) = A{i + l,boUomD) + 2A(i, topo - 1) + A{i - l,bottomD) (20) 

-A{i + l,topD - 1) — 2A(z, hottomD) — A{i — l,topD — 1) 

ASy{i) - A{rightDi + 1) + 2A{leftD - 1, i) + A{rightD, i 一 1) (21) 

-A{leftD - 1,1 + 1) - 2A{rightD,i) — A{leftu — l,z — 1) 

As the values of A{x^ y) have been stored in a 2D array, the computation of A{x, y) 

can be performed in constant time. Hence, the functions ASx{i) and A ^ ( z ) can also 

be computed in constant time. 
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4.4 Neighbor blocks 

The slimmed graph is then generated by associating each block with a node. For 

each pair of neighbor blocks, an edge is added to connect them. Any two blocks with 

shared boundary are considered as neighbor. Let {xijeft^ Vî top) and {xî right, yi,boUom) 

be the corner positions of block i. Whether or not block i and block j are neighbor 

is determined by the following criteria. 

Xmin = min{Xijeft, XjJeft) 

^max — TTlCLOc(jJCi,right, ^j,right) 

Vmin — TmTl{jJi,i;op, Vj^top) 

Vmax — 7TlttX:(jJi,boUom,yj,bottom) (22) 

If 

^max — ^min ^ {^i^right _ ^i,/e/t) + ($j,right — ^i,/e/t) (23) 

and 

ymax — ymin ^ {jJi^hottom — Vi^top) + {yj,boUom — Vj,top^ (24) 

then the block i and block j are neighborhood. 
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4.5 Slimmed Graph Generation 

Our slimmed graph generation algorithm is outlined in Algorithm 3. In this graph 

construction procedure, if all pairs of blocks are considered in the neighborhood check-

ing, the time complexity is 0(n^), where n is the number of nodes in the slimmed 

graph. Nevertheless, if the edges are added during the block decomposition, by our 
3 

graph generation algorithm, the worst case time complexity is O{n2). 

There are two threshold values A and 0 used in the block decomposition. Threshold 

A is the maximum area of each edge block. Threshold 0 is the maximum on the total 

sum of gradient of a plain block. The nature of a block can be classified by the 

algorithm shown in Algorithm 2. The size of the slimmed graph can be controlled 

by A and 6. When the value of 入 or 9 increases, a slimmer graph can be obtained. 

However, the fitness and accuracy of the boundary line will be reduced in this case. 

In our algorithm, a new node is generated in each splitting. The Figure 4-a and 

4-b illustrate how a node is converted into two connected nodes during the block 

splitting. The Figure 4-c and 4-d illustrate how to complete the node division by 

adding the edges from its neighbors to these new nodes. 

t>There are three possible types for the given 
block B : plain, edge and unclassified. 

Algorithm Block-Classification(Bh>ck B) 
If (V grey value in B < 6) 

B is a plain block, 
elseif (the area of B < A) 

B is an edge block, 
else 

B is unclassified and 
will have a further subdivision. 

Algorithm 2: the algorithm of Block Classification. 
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(c) Find out the neighbor block of Bi, (d) Find out the neighbor block of B2 
And then connect the suitable node pair. and generate the resulted graph. 

Figure 4: An example of node division while splitting the blocks. 
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Notation 
Q is the graph. 
T is a list of blocks to be classified. 
Nr(n) is a list of adjoined nodes of node n. 
B{n) is the corresponding block of node n. 
n{B) is the corresponding node of block B. 
Bo is the initial block representing the whole image. 

Algorithm Slimmed-Graph-Generation 
Append T with Bo. 
A d d n{Bo) to graph Q. 
while {T^empty) 

> Pop b from T 
if b is neither plain nor edge then / / Check with Algorithm 2. 

Pop b from T. 
Split block b into b1,b2. / / Use the split line selection method 

// mentioned in Section 4.2 and 4.3. 
Ur ^Nr{n{h)) 

Append T with 61,¾-
Remove n[h) from graph Q. 
Add n(61),n(62) to graph Q. 
Connect n(6i), n{h2) with an edge, 
for all node p in node list n” 

if B{p) and bi are neighbor then / / Use the neighborhood 
Connect p,n(bi) with an edge. // checking method mentioned 

end if // in Section 4.4 . 
if B(p) and 62 are neighbor then 

Connect p, n(b2) with an edge, 
end if 

end for 
end if 

end while 

Time Complexity 
Append, Add, Pop, Remove, Connect, if...then : 0(1). 
Split : 0(R). where R 二 max{W,H), 

W and H are the width and height of the given image, 
for, while : depend on number of iterations. 

Algorithm 3: the algorithm of Slimmed Graph Generation. 
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In this case, the {M - 2) x {N - 2) block is surrounded by 2(M + N - 2) 
pieces of 1 x 1 tiny blocks. Its neighborhood number reachs maximum. 

Figure 5: A block with maximum neighborhoods. 

4.6 Time Complexity 

The time complexity of our slimmed graph generation algorithm in the worst case 
3 • • • 

is O{n2). Referring to the Algorithm 3, we know that the time complexity of this 

algorithm is 0{[c^R)n) where c is the maximum number of the neighborhood among 

the blocks, n is the number of nodes in the graph, W and H are the image width 

and height respectively and R is equal to max{W^ H). In the worst case (Figure 5), 

a (M — 2) X [N — 2) block adjoins with many 1 x 1 tiny blocks. In this case, c will 

equal to 2(M - 2 + N — 2) + 4. 

Since n < W x H {W and H are the image width and height), the upper bound 

of n is R^. Hence, the time complexity of our slimmed graph generation algorithm in 

the worst case is 

0{{c^R)n) = 0 ( { [2 (M + N - 4) + 4] + R} x R^) 

=0{R^) 

=0{nl) 
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4.7 Results and Conclusions 

Figure 6 shows a simple example of slimmed graph generation of a chinese character 

image. This image contains 10000 pixels. For the slimmed graph, only 1043 nodes 

and 3619 edges are used to represent it. 
3 

In summary, a slimmed graph generation algorithm with time complexity O{n2) 

is proposed. This technique can be exploited in various real-time image processing 

tools to improve their performance. In next chapter, we will attempt to extend our 

idea on the Intelligent Scissors. 
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(a) A 100x100 image The grey-scale edge image, 
of a chinese character 'Red'. 

霸 薩 

^^ii§i^^^ 
(c) The BSP block analysis. (d) The slimmed graph. 

The blue block is edge block 
and the orange one is plain. 

Figure 6: A slimmed graph generation example of a chinese character image. 



Chapter 5 

Fast Intelligent Scissor 

Using Intelligent Scissors [24], user can accurately extract an object from the digitized 

image using simple intuitive gesture. However, this tool suffers from slow performance 

when large images are treated. Moreover, selecting a new seed point requires a no-

ticeable amount of time in path searching. By observation, the pixels within the 

non-edge regions are rarely involved in the boundary computation. If these nodes 

can be removed before extracting the boundary, the performance of the intelligent 

scissors can be sped up. In this part, we introduce a technique which utilizes the 

mentioned observation. 

38 
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5.1 Background 

Accurate object extraction from the digitized image has long been an open problem 

in the field of Computer Graphics and Computer User Interface. Mortensen and 

Barrett [24] introduced an interactive tool known as Intelligent Scissors to segment 

the desired object out of a given image. Stalling and Hege [33] further extended the 

use of this tool for the medical image segmentation. 

The kernel of Intelligent Scissors is the Dijkstra [6] shortest path searching algo-

rithm. After the seed point and the goal point are selected by the user, a boundary 

line between these two points can be obtained by computing the global optimal path. 

In the graph representation of the image, each pixel is mapped to a node connecting 

with its 8 neighbor pixels (nodes) by the edge. As the example shown in Figure 3(e), 

an image of W x H pixels contains W x H nodes and 4WH — 3{W + H) + 2 edges. 

5.2 Motivation of Fast Intelligent Scissors 

In the original Intelligent Scissors algorithm, all potential shortest paths have to be 

recomputed whenever a new seed point is chosen. This computation is performed 

using a dynamic programming which has the time complexity of 0(n) , where n is 

the number of nodes(pixels) in the graph. Hence, the performance of Intelligent 

Scissors is highly depended on the size of the graph. By observation, there is a 

great portion of nodes within the non-edge regions which are rarely involved in the 

boundary computation. If these nodes are pruned before running the algorithm, the 

performance should be significantly improved. For a real time interactive application, 

its speed is critical. Fast intelligent scissors provide the user a fluent control as 

well as an immediate preview while dragging the mouse to select the goal point. 

Moreover, if the tool can show the resulting image boundary right after altering the 
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parameter, the user can have a comfortable fine tuning of the boundary so as to obtain 

a more accurate segmentation. A faster cost recomputation for the fine tuning can be 

achieved by reducing the number of nodes and edges in the graph. Our motivation is 

to reduce the size of the graph in order to achieve real time interactive feedback. 

For more information about the original idea of Intelligent Scissors, please refer to 

Section 2.7.1 in Chapter 2. Furthermore, the detail of computation of the Slimmed 

Graph have been discussed in the previous chapter. In this chapter, We will give the 

discussion of how to speed up the Intelligent Scissors by applying the Slimmed Graph 

in the shortest path searching. The implementation and results of fast intelligent 

scissor is shown in Section 5.4. Conclusions are drawn and future directions are 

discussed in Section 5.5. 

5.3 Main idea of Fast Intelligent Scissors 

The main idea of our fast Intelligent Scissors is to perform the boundary searching on 

a slimmed graph instead of the original complete image graph. In this application, 

we put the slimmed graph generation as a preprocessing scheme. When the image is 

completely loaded, the slimmed graph will be computed immediately. 

When the user selects a seed point 5, the block enclosing this point B(s) will be 

located. The corresponding node n(B(s)) will be used as the starting node. After 

the user has selected the goal point g, the boundary path between the nodes n{B{s)) 

and n{B{g)) would be calculated by the 2D dynamic programming algorithm shown 

in Algorithm 1. In our application, this algorithm works with the slimmed graph 

proposed in the previous section. Whenever the parameters or the costs have been 

altered, the costs in all edges and the boundary path would be recomputed. 
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5.3.1 Node position and Cost function 

A 2D position (x^^,^^^) is assigned to each node in the slimmed graph to represent 

the group of pixels within the block Bk. Position {xn^^Vrik) is found by the weighted 

average functions shown in Equations 25 and 26. 

— E & l Z U G i ^ , J y . , , . 
、 二 W W ^ ( ) 

一 Sj^o 1 ^f=o^ G{i^j)j 
y^k — v ^ M - l ^N-l r^(- '\ � O j 

2u=o z^i^o ^V^J) 

For each block, l{rik) is the average grey value of the edge block. 

U N Sj^o^E^o^ G[i,j) 
"-。= m (27) 

Since the topology of the slimmed graph is no longer a grid in which each pair of 

neighbor nodes has the same inter-distance, we need to include the effect of distance 

between the nodes into the local cost function calculation. Hence, the cost function 

of the edge between two nodes can be defined as the following equation: 

Cost(n^2) = a^{xn, 一 x^,y + {Vn, Vn,y + /̂ [1.0 - /(ni)][1.0 - l{ri2)] (28) 

In the original Intelligent Scissors, Dijkstra algorithm is applied to search for the 

shortest path. In order to keep the Dijkstra algorithm work well, the cost value along 

each edge must be positive value. The cost function (Equation 28) is designed under 

this consideration. 

The two parameters a and j3 are the positive weights to control the smoothness and 

fitness of the boundary line respectively. In practical application, the new resultant 
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Sl immed Graph T h e graph S l immed graph % of size 

Thresholds in Original I .S. in Fast I .S . reduced 

Figure Size(pixels) 0 A # of node # of edge # of node # of edge node edge 

^ " 6 " ^ 1 0 0 x 1 0 0 "0.08 5 “ 10000 3 9 4 0 2 1 0 4 3 — 3 6 1 9 "S9.57 90.82— 

^ 7 4 8 8 x 3 3 5 0.08 5 ^ 6 3 4 8 0 6 5 1 4 4 9 2 4 5 8 2 8 4 2 1 6 —84.96 87.07 

~ " 8 3 2 0 x 2 4 0 0.08 5 ~ ~ 7 6 8 0 0 ^ 0 5 5 2 2 8 1 3 4 2 7 3 9 1 ~ 89.41 " " o T o T 

~ " 9 5 1 2 x 5 1 2 0.08 7 2 6 2 1 4 4 1 0 4 5 ^ 1 7 8 2 5 5 9 8 4 8 93.20 94.28 

10 1 0 0 x 1 0 0 0.02 5 10000 3 9 4 0 2 — 1343 “ 4 5 6 6 ~ 8 6 ^ 88.41 

11 4 1 6 x 6 0 0 0.12 “ 7 2 4 9 6 0 0 9 9 5 3 9 4 1 8 3 7 0 “ 6 0 5 1 4 ~ 9 2 ^ 93.92 

~ ^ 2 6 0 0 x 4 1 5““ K u 7~~~ 2 4 9 0 0 0 — 9 9 2 9 5 7 1 6 5 0 5 5 4 7 0 5 93.37 94.49 

Table 1: This table shows the size of the slimmed graph in various fast intelligent 
scissors testings. 

boundary should be displayed right after the user changes these parameter values. 

5.4 Implementation and Results 

In our implementation, LEDA and ImageVision libraries are used. LEDA [25] is a 

C + + library of data types and algorithms of combinatorial computing. It provides 

some useful classes and methods such as graph and Dijkstra algorithm for our imple-

mentation. We have also used the classes from the ImageVision library [8] to perform 

some image processing operations. 

Our algorithm have been executed under the Silicon Graphics Onyx equipped 

with Reality Engine. Different types of images such as digitized image captured from 

video camera, medical image and synthetic image are tested. Table 1 summarizes the 

size of the slimmed graph in these experiments. The statistics in the table indicate 

our slimmed graph generation algorithm can reduce the size of graphs significantly. 

Figure 7 demonstrates how we use the fast Intelligent Scissors to extract the object 

from the photo taken in the Great Wall. The results of blocks decomposition and the 

slimmed graph are shown in Figure 7-c and 7-d. Figure 8 shows the result of the fast 

Intelligent Scissors applied to a low quality image captured from video camera. Figure 
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9 demonstrates that the fast intelligent scissors can work well on medical image. In 

Figure 10, we segment the cube out from the synthetic image. Figure 11 and 12 

illustrate two more photos taken in Korea. The desired regions in these images can 

be outlined accurately. 

5.5 Conclusions 

In summary, we precompute a slimmed graph to speed up the Intelligent Scissors 

algorithm. By our fast Intelligent Scissors, user can segment the desired object from 

the given image accurately and efficiently . 

Since the cost recomputation has been sped up by reducing the edge and node 

quantity in the graph, the user can interactively fine tune the boundary shape by 

altering the parameters such as a and f3. With a real time fine tuning of these 

parameters, a more accurate result can be obtained. 
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Great Wall. Scissors. 

_ _ | 画 
(c) The BSP block analysis. (d) The slimmed graph. 
The blue block is edge block 
and the orange one is plain. 

Figure 7: An application of the Fast Intelligent Scissors on a photo taken in China. 



Chapter 5. Fast Intelligent Scissor 45 

： II 1 | _ _ _ _ _ 

_唤 i l _ _ _ 

i Wi _ 
_ _詹 ^ : J | III _ s _ s s 

(a) The image captured from (b) The grey-scale edge image 
a video camera. (The quality of this edge image 

is poor.) 
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(c) Result of fast intelligent (d) 20 seed points are needed 
scissors. to segment out the doll. 

Figure 8: An application of the Fast Intelligent Scissors on an image captured from 
a video camera. 
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(a) (b) 

(a) The left figure is a 512 x 512 CT image which shows 
the cross-section of a male chest. 

(b) In the right image, the left lung has been segmented out by 
fast Intelligent Scissors. 11 seed points are used to outline 

the boundary. 

Figure 9: An application of the Fast Intelligent Scissors on the medical image. 
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(a) (b) 

(a) The left figure shows a synthetic image, 
(b) The cube is segmented out by fast Intelligent Scissors. 

Figure 10: An application of the Fast Intelligent Scissors on the Computer Generated 
image. 
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(a) A photo taken in Korea. (b) The four wooden rods is 
segmented out 

by fast Intelligent Scissors. 

Figure 11: An application of the Fast Intelligent Scissors on the natural scene taken 
in Korea. 
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(b) A ship is segmented out.  

Figure 12: An application of the Fast Intelligent Scissors for segmenting the ship in 
the natural scene. 



Chapter 6 

3D Contour Detection: Volume Cutting 

Intelligent Scissors is an efficient interactive tool for 2D image segmentation. By 

interactive use of a dynamic-programming graph-searching algorithm, a region of 

interest in the image can be accurately obtained. In this chapter, we introduce the 

use of Intelligent Scissors for contour detection on a volumetric data surface. It is 

fast enough to be used in an interactive virtual environment, in which the user can 

intuitively select the contours on the volumetric data surface in an accurate and robust 

manner. Moreover, we extend our work to the volume data manipulation, cutting off 

the interesting part of the volume by providing a contour on its surface. The cutting 

surface is computed by a fast dynamic programming algorithm. By using this tool, 

many new volumetric data models can be created from an existing one in an effective 

way. 

50 
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6.1 Interactive Volume Cutting with the intelli-

gent scissors 

Interactive volumetric data manipulation is an important focus in recent Visualiza-

tion and Graphics interface research. Galyean and Hughes[12] developed a desk-top 

Polhemus-based system for manipulating a volumetric model interactively. Serra et 

a/.[32] proposed a general system for free-form creation of 3D objects with given vol-

ume data. Wang and Kaufman[39] proposed interactive volume sculpting techniques 

to carve beautiful models from a textured volumetric block. However, the existing 

volume sculpting tools rarely provide smooth, intuitive and accurate cutting. 

In 1995, Mortensen and Barrett[24] proposed an interactive tool for 2D image 

segmentation, called Intelligent Scissors, by which users can easily and accurately 

outline the region of interest (ROI) in an image. We borrow these ideas and design a 

new, intuitive and accurate 3D volume cutting methodology. 

To cut off the volume of interest, the user first draws a closed contour on the 

volume surface as the boundary. Then, a cutting surface will be generated by a 

fast dynamic-programming computation. The user-defined boundary is similar to a 

wire loop with an arbitrary shape. When this is taken out of soapy water, a film 

spanning the loop with minimum area is formed. The shape of the cutting surface 

which aims to separate two volumes is similar, but it is driven to voxels with high 

gradient magnitude. 

In medical data visualization, interactive volume cutting can provide various views 

of the internal structures of the human body. In volume data editing, an accurate 

volume data cutting can also benefit the artists to design more complicated volume 

model by cutting and pasting existing volume data. These applications explain the 

motivation of our work. 

In this chapter, we will discuss how to detach a three dimensional ROI from a given 
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volume intuitively, correctly and efficiently. The next section (Section 6.2) addresses 

some basic issues concerning contour detection on a volume surface, and introduces 

the use of Intelligent Scissors on the volume model surface. Section 6.3 discusses the 

computation of the cutting surface with dynamic programming techniques, as well as 

some topological problems occurring when arbitrary shapes of volume and contour 

are permitted. We illustrate its use in Section 6.4, and give conclusions in Section 

6.5. , 

6.2 Contour Selection 

There are two straightforward approaches to generalizing the Intelligent Scissors tech-

nique (described below) to volumetric data. The first is to apply the original 2D ver-

sion on the screen buffer to detect the contour. The second is to consider the volume 

data set as a large 3D graph and then search for the shortest path (contour segment) 

between two nodes (voxels) with Intelligent Scissors. 

Both methods have their disadvantages. For the first, since the cost function is 

evaluated by the information (such as depth and intensity) in the screen buffer, its 

values depend strongly on the direction of view. The starting point will be lost if the 

viewpoint is changed during the use of Intelligent Scissors to define a segment. For the 

second method, although the cost function is view independent, the computational 

time is extremely large. It is not suitable for interactive application. 

Therefore, we only deal with the surface voxels in volumetric data. We model 

these voxels as a graph and apply a graph searching algorithm to find a global optimal 

boundary from a seed point. This 'Intelligent Scissors' technique originated in the 

field of image processing [18]. We apply it to 3D iso-contour detection, and implement 

it in the Virtual WorkBench[28, 29], a virtual environment with 3D display and input 

(see Figure 17). With this interface, we can mark a particular surface voxel as the 
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start point, and different paths can be displayed while the 3D stylus moves along the 

surface. This helps the user select the most suitable iso-contour interactively. 

6.2.1 3D Intelligent Scissors 

In 2D image segmentation, 'Intelligent Scissors' has been proved to be an efficient 

method. In the context of 3D volume visualization, we modify the algorithm so that 

it can be applied on a graph generated from the isosurface of volumetric data. The 

points in the mesh contain not only their positions but also the interpolated gradients, 

which will be used to evaluate the cost function, discussed below. Following the idea 

of Intelligent Scissors, we calculate global optimal paths by Dijkstra's shortest path 

algorithm. 

To find a contour fitting the surface, however, geometric information is more 

important than intensity. Therefore, we create the local cost between vertices u and 

V according to their gradient magnitudes and the dot product of their gradient vectors. 

The resulting cost function is 

C O S t ( u , i ; ) = \\pu -pvW {wg * fg{u,v) + Wn * fn{u,v)^ ( 2 9 ) 

f r . ” �1 御）+ (御) , 训 、 

他 ” ) = 1 _ 2max(G) (30) 
,( �1 - Nu. Nv , \ 

fn[u,v) = — — - — — (31) 

where Pu,Pv, ^u, ^v are the position vectors and normal vectors at u and v re-

spectively, and Wg and Wn are the weighting factors controlling the influence of fg and 

fn- The gradient vector at a vertex is evaluated by trilinear interpolation between 

gradients at nearby voxels. By using this formula, the Dijkstra algorithm would tend 

to find a path which has large gradient change. 
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6.2.2 Dijkstra's algorithm 

We use the Dijkstra algorithm [6] to do the searching. This algorithm mainly does 

2D dynamic programming to find all paths from all points to the seed point s that 

are globally optimal; i. e.’ such that the sum of costs along each path is minimal. The 

search need not finished a full pass, but can be stopped when the search reaches the 

position selected by the 3D stylus. This can save much time since unnecessary paths 

would not be calculated. The user rarely moves the stylus away from 5 faster than the 

wave of Dijkstra results is computed, so the earliest results are exactly those needed 

early. If the seed point is changed, the searching must be started again. Time can be 

saved here since not all the points need to be re-calculated. For example, if u is the 

seed point and v is the new seed point, all points passed through the route from u to 

V need not be re-calculated. If p ~^ v ~^ u is the shortest path from a point p to u, 

then p ~^ V must be the shortest path from p to v. 

Dijkstra's algorithm (Algorithm 1) uses dynamic programming to update the cost 

of each point step by step. For each point p, a pointer points to the neighbor through 

which passes the shortest path from p to the seed point 5. Thus a path from any 

selected point to 5 can be established quickly. Note that the cost function c(u, v) can 

be preprocessed and the only changed function is B(w), which indicates the path from 

u to 5. 

6.3 3D Volume Cutting 

As the user defines a closed contour on the volume surface, the ROI can be selected 

by estimating the shape of the external surface and the cutting surface. All voxels 

belonging to the selected ROI are bounded by these two surfaces. Figure 13 shows 

how to select it using contours. 
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The external surface is the part of the whole volume surface, which can be esti-

mated by any mesh generation algorithm [23] and surrounds the interested volume 

when combined with the cutting surface. The shape of this cutting surface is influ-

enced by the shape of the specified contour (boundary), the gradient of the voxels 

near this surface, and its smoothness. 

For surface modeling, a deformable mesh [3, 21] can be used to fit the surface. 

However, the shape ofthe given contour cannot provide enough information about the 

topology and the connectivity of this mesh. To generate the junctions in the mesh, 

the given contour will be projected on a discrete grid surface. In this projection, each 

junction can be bijectively mapped to an unique grid within the interior region of the 

projected contour (Figure 14). To increase sampling detail, the projected surface is 

rotated to an optimal orientation such that the number of junctions in the mesh is 

maximum. When the contour cannot have an one-to-one projection to the projected 

surface, we can divide it recursively into several smaller contours until all junctions 

in the cutting surface can be generated. 

6.3.1 Cost function for the cutting surface 

Two vital factors, the continuity betweenjunctions and the voxel gradient near them, 

are considered for defining the cost function of the mesh. The first factor makes the 

surface smooth and flat. The second factor drives the surface to fit the iso-surface 

in the volume. Its function is similar to the image force used with an active contour 

20] to fit the edge in a 2D image. The cost function C{x, y, z) for a voxel with the 

intensity /(a;, y, z) can be defined by 

C{x,y,z) = -a\\/I{x,y,z)\^(]S{x,y,z), (32) 
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The selected volume is bounded by two surfaces 
(external and cutting surfaces). 

Their common edge is defined by the user. 

Figure 13: The external surface and the cutting surface. 
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(a) (b) 
(a) A contour is projected on a discrete grid plane, 

(b) Then, the junctions of the surface mesh 
is generated. 

Figure 14: Generation of the deformable mesh. 
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(a) A projected contour, (b) The interior region, 
(c) L{x^ y) will be assigned the value 0 

when (x,y) is an edge pixel, 
(d) The resulting function L{x^ y). The region 

is separated into discrete contours by different numbers. 

Figure 15: Calculation of L[x,y). 
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where a and p are the weighting parameters for the iso-surface fitting factor and the 

surface continuity respectively, V is the gradient operator, and S{x^ y, ^), discussed 

in next section, measures the continuity of the voxel at (x, y, z) with its neighbors on 

the mesh. Let M. be the set of voxels involved in the cutting surface. Then the cost 

for a cutting surface CM is defined as follows: 

C M = E C{x ,y ,z ) (33) 
{x,y,z)eM 

In general, the continuity factor S{x^ y, z) can be defined as the average value of the 

distances from itself to all of its neighbors. However, this definition is not efficient 

enough when seeking the minimum total cost, and can also make the resulting mesh 

too fiat. We suggest a new continuity function, to speed up the computation. 

6.3.2 Continuity function S{x^y^z) 

All pixels within a closed loop on the grid surface can be classified by their shortest 

distances (measured in 'pixel hops') to the boundary. In other words, this closed 

region can be divided into many contours. As in Figure 15, these contours are con-

sidered as pixel chains on the discrete grid surface. In our algorithm, the continuity 

function S{x, y, z) is computed by measuring the 3D distance between neighbors' 

contours, rather than neighbor voxels. The integer function L{xp,yp) indicates the 

shortest distance from the projected point {xp^yp) to the boundary of the projected 

interior region. The map of L(Xp, y^) can be evaluated by the simple algorithm shown 

in Algorithm4. 
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step instruction 
T II c f - 0, 

V a;，"，L { x , y )卜 oo .  
2. V(a;, y) within the projected 

contour, I[x^y) <— 1. 
3. For all edge pixels [x̂  y), 

L{x,y) 4 - c 
/(冗，"）—0  

4. If all I{x,y) = 0 then 
exit. 

5. c <— c + 1, 
goto 3. 

Algorithm 4: The algorithm to calculate the map of L{x, y). 

Then, the set of voxels Aî x,y,z) involved in the continuity computation can be 

found by the equations 

^(^,y,^) = ^{x,y,z) n IS(L(Xp,yp)-l) n Q (34) 

�,y,z) ={{x',y',z') I II (x;,y；) — {x^,y^)\ <e] (35) 

Bk = { {x, y, z) I L[Xp, yp) = k } (36) 

where (xp, yp) and {x'^, y'^) are the projections of {x, y, z) and {x', y', z') respectively, 

and Q is the voxel set which has been guaranteed to be involved in the surface. 

The parameter e controls the connectedness of two neighbor voxels on the projected 

surface. It is always a real number selected from 1.0 to 1.5. For example, i fe = 1.0, 

two neighbor voxels will have 4 connectedness on the projected surface. Since the 

continuity factor of the voxel at {x,y,z) is only affected by the points in 乂(0；’仏̂  ’ 
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S{x^ y, z) can be defined as 

外，仏和知(-广、(響)『 (37) 
^{x,y,z) 

6.3.3 Finding the cutting surface 

The mesh defining the cutting surface can be computed by minimizing the cost 

function CM (equation 33). This process can be performed efficiently by dynamic-

programming techniques. Our algorithm (Algorithm 5) has the following properties: 

1. The junction locations are computed from the surface's boundary to its most 

interior points. 

2. By the dynamic programming technique, our minimization is a one-pass process. 

3. In 3D space, an 'interior region，cannot be clearly defined by a closed contour 

alone. Hence, a projected surface is used to clarify this definition. 

4. The minimization of the cost function CM makes the resulting surface smooth, 

flat and close to the isosurface. 

5. Our surface fitting algorithm, similarly to active deformable models, works with 

a cost minimization process. 

After this algorithm finishes, the array V[i,j] contains the information about the 

shape of mesh. All the junctions involved in the mesh are stored in Q. 

6.3.4 Topological problems for the volume cutting 

In general, if arbitrary volumes and contour shapes are considered, many unexpected 

volume cuts will occur. For example, the torus in the Figure 16a cannot be separated 
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into two parts by the contour loop shown. Since any cutting surface defined by this 

type of contour will go outside the volume, the cutting is invalid (shown in Figure 

16b). 

Another kind of problem is that mesh junctions cannot be evenly generated by a 

simple planar surface. Figure 16c,d shows a C-shaped contour for which it is difficult 

to produce a good projection on a single plane. 

Handling all of these situations would lead to extremely complicated topological 

problems. The most direct solution in practice is to ask the user for a well-conditioned 

contour when a bad case has occurred. 

6.3.5 Assumptions for the well-conditional contour used in 

our algorithm 

Assumption 1 The user-defined contour C must separate the surface of the original 

volume into two parts and completely detach the external surface of the ROI. 

Otherwise, this volume cannot be separated by any surface spanned by C. 

Assumption 2 In the projection, there should exist a single closed contour, without 

any self-intersection. 

Assumption 3 Everyjunction on the resulting cutting surface should have a unique 

mapping on the projected surfaces. 

We introduce the algorithm in Algorithm 6 to check whether the given contour satisfies 

Assumption 1. 
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(a),(b) show a case of invalid cutting. The torus cannot be divided 
by this loop, as the cutting surface stays outside of the volume, 

(c) shows a case of volume cutting with a C-shaped contour, 
(d) illustrates that three projected planes are used 

in order to make the junctions on the mesh distributed evenly. 
Figure 16: Illustrations of some topological problems. 
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6.4 Implementation and Results 

We have implemented the algorithm on the Virtual WorkBench [29, 28], a general 

purpose reach-in 3D interface that supports stereo display with shutter glasses or 

mirrors, and 3D input with a 6DOF stylus. We choose this virtual environment 

because we found that a 2D display of volumetric data is seldom enough. Another 

main advantage of the Virtual WorkBench is that choosing a point from the mesh in 

3D space, rather than via a 2D display and a mouse, can help us determine whether 

the contour detected is suitable. Figure 17 illustrates how user selects the surface 

contour in the Virtual Environment application. By using this 3D interface, we can 

easily select the seed point on the volume surface, with a visible 3D stylus. A 3D snap 

can be applied to the point of selection such that only the mesh point with maximum 

gradient magnitude would be selected. The size of snap can be defined by the user 

such that a 'better，edge point can be selected. Figure 19 shows the results. We apply 

our algorithm on a 1 2 8 x 1 2 8 x 6 4 CT(Computed Tomography) data of a human head. 

The program runs on a Silicon Graphics Onyx equipped with Reality Engine and the 

rendering is done by 3D texture mapping [36]. In Figure 19, we use our algorithm 

to cut away the nose and part of the face from the head. The contour of the nose 

is created by using three seed points selected by the user; i.e., three segments are 

generated by the algorithm. In the second case, six control points are used. We 

can see the interior structure of the head after the corresponding part of the face is 

removed. 

6.5 Conclusions 

In summary, we have introduced a means to select a contour on a volume data surface 

in a virtual environment. The Intelligent Scissors technique provides an accurate and 
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robust interactive contour detection. 

We have also proposed a cutting surface estimation algorithm, by which a region 

of interest in the volume can be determined by one closed contour on the surface. 

Dynamic programming reduces the computational complexity. 
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. (a) 
By using a 3D stylus, the user can select seed points 
on the volume surface (indicated by the red points). 
And then the segment (colored in pink) between two 

seed points will be estimated by the Intelligent Scissors 
techniques. 

Figure 17: Drawing a curve segment with a 3D stylus. 
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Figure 18: Drawing the contour by selecting the seed points one by one. 
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霞赢憑丨 , 

.⑷ 
The original volume. 
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(b) A contour of the nose (c)The volume (d) The nose 
is defined by user. without the nose. is highlighted. 

® | | ^ ^ ^ i ^ ^ W w 
(e) A closed contour (f) The ROI cut away. (g)The volume of interest 

of the front face. selected by the contour. 
Figure 19: Volume Cutting results. 
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step instruction 

T g ^ c n Bo 
// C is the set of voxels touching the given contour. 

// and Q will be used to find A by equ. 34-
k f - 1 
Vz,j , V[i^j] <— null 

// V[i^j] is the array of 3D vectors which 
// defines the shape of resulting cutting surface. 

Vi,j , c[i,j] — 00  
2. For each {x^ y, z) eC 

c[xp, yp] ^ 0 
y[xp, Vp] <- {x,y,z) 

// where {xp, y^) is the projected point 
// of {x^ y, z) on the discrete grid surface. 

end for 
~J. V — Bk 

if V = 0 then exit. 
4. For each {x, y, z) £V 

Compute A^x,y,z) by equ.34. 
^tmp ^~~ 

E C{x\y\z') 
C(x, y, z) + 斷‘)̂ (:’"…„ 

^{x,y,z) 
if mtmp < c[xp, yp] then 

^L^P5 Vp] ^~ ^tmp 
// Here, Xp, y^ are rounded off. 

V[xp, yp] — {x,y,z) 
end if 

end for 
T Q^[J^,JV[iJ]-{nuU} 

k f- k+ 1 
Goto step 3. 

Algorithm 5: The algorithm to compute the cutting surface. 
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step instruction 

1. Set J to be the set of junctions in the mesh 
representing the surface of the whole volume. 

2. J — J — % , where % is the node set 
representing the given contour. 

3. Randomly select a node v in J which is on the 
external surface covered by the segments of 
interest. 

4. Find the set of nodes Cy which is connected to v. 

T If Cy = J then 
return false / / The cut is invalid 

else 
return true / / The cut is valid 

Algorithm 6: This algorithm checks if a given contour can cut one volume into two 
sub-volumes. 



Chapter 7 

Conclusions 

In this thesis, we have proposed the new solutions to solve the existing 2D and 3D 

image segmentation problems. In this section, we will have a summary to state our 

main contributions and the future directions of our research. 

7.1 Contributions 

There are two main contributions in our research: 

• We develop the fast intelligent scissor to segment the desired object from the 

given image of natural scene efficiently, accurately and in a robust manner. The 

main idea of this technique is to use a slimmed graph to filter out the redundant 

data in order to speed up the computation in the segmentation phase. 

• We develop a freehand volume cutter to segment the interesting partition of a 

given 3D volume data naturally. Firstly, we select a contour on a volume data 

surface within a virtual environment. The above proposed tools have been pre-

sented on Graphics Interface'98 [42] and published in the Journal of Computer 

Science and Technology [16]. Moreover, we proposed a cutting surface esti-

mation algorithm to determine the interesting sub-volume by using the closed 

contour drawn on the iso-surface. 

71 
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7.2 Future Work 

The following are some possible applications and extensions of the techniques pro-

posed in this thesis. 

7.2.1 Real-time interactive tools with Slimmed Graph 

Slimmed Graph mentioned in Chapter 4 is a general technique to speed up the image 

segmentation computation. In current stage, we only applied it on the Intelligent 

Scissors. In future, we will extend the idea of slimmed graph on the other interactive 

segmentation tools such as Magic Wand and Active Contour Model [24 . 

7.2.2 3D slimmed graph 

The size of the volume data is usually extremely large. The slimmed graph we pro-

posed can also be applied to speed up the 3D volume data analysis. The kernel of 

the 2D slimmed graph is block decomposition. If we extend this idea to decompose 

the cube in the 3D space, a 3D slimmed graph for the volume data can be generated 

easily. Using 3D slimmed graph, we can have the following applications: 

• Speed up the Volume Cutting proposed in Chapter 6. 

• Generate different level-of-detail of the volume model. 

• Perform volume rendering with 3D slimmed graph. 

7.2.3 Cartoon Film Generation System 

The cost of animation production is high because a large amount of drawings from 

artists are always required. It is a labor-intensive work to create high quality picture 
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even for a professional artist. Moreover, producing high quality animation is a time 

consuming task. 

With the accurate image segmentation tools, we can extract the profiles and 

the critical edge data from the natural image. Using these tools, we can develop 

a computer-based system to convert the real-world photo or film into high quality 

cartoon animation with a little user-intervention. 

The cartoon generation system should contain the following functions: 

1. It can accurately extract the profiles from the real-world photo image. 

2. It can generate the interpolated images between two key frames with extracted 

profile. 

3. It can render the cartoon-like picture from the results of profile extraction. 
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