1,773 research outputs found

    Learning morphological phenomena of Modern Greek an exploratory approach

    Get PDF
    This paper presents a computational model for the description of concatenative morphological phenomena of modern Greek (such as inflection, derivation and compounding) to allow learners, trainers and developers to explore linguistic processes through their own constructions in an interactive open‐ended multimedia environment. The proposed model introduces a new language metaphor, the ‘puzzle‐metaphor’ (similar to the existing ‘turtle‐metaphor’ for concepts from mathematics and physics), based on a visualized unification‐like mechanism for pattern matching. The computational implementation of the model can be used for creating environments for learning through design and learning by teaching

    Reversible language extensions and their application in debugging

    Get PDF
    A range of methodologies and techniques are available to guide the design and implementation of language extensions and domainspecific languages. A simple yet powerful technique is based on source-tosource transformations interleaved across the compilation passes of a base language. Despite being a successful approach, it has the main drawback that the input source code is lost in the process. When considering the whole workflow of program development (warning and error reporting, debugging, or even program analysis), program translations are no more powerful than a glorified macro language. In this paper, we propose an augmented approach to language extensions for Prolog, where symbolic annotations are included in the target program. These annotations allow selectively reversing the translated code. We illustrate the approach by showing that coupling it with minimal extensions to a generic Prolog debugger allows us to provide users with a familiar, source-level view during the debugging of programs which use a variety of language extensions, such as functional notation, DCGs, or CLP{Q,R}

    CLiFF Notes: Research in the Language Information and Computation Laboratory of The University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLIFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science, Psychology, and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. With 48 individual contributors and six projects represented, this is the largest LINC Lab collection to date, and the most diverse

    CLiFF Notes: Research In Natural Language Processing at the University of Pennsylvania

    Get PDF
    The Computational Linguistics Feedback Forum (CLIFF) is a group of students and faculty who gather once a week to discuss the members\u27 current research. As the word feedback suggests, the group\u27s purpose is the sharing of ideas. The group also promotes interdisciplinary contacts between researchers who share an interest in Cognitive Science. There is no single theme describing the research in Natural Language Processing at Penn. There is work done in CCG, Tree adjoining grammars, intonation, statistical methods, plan inference, instruction understanding, incremental interpretation, language acquisition, syntactic parsing, causal reasoning, free word order languages, ... and many other areas. With this in mind, rather than trying to summarize the varied work currently underway here at Penn, we suggest reading the following abstracts to see how the students and faculty themselves describe their work. Their abstracts illustrate the diversity of interests among the researchers, explain the areas of common interest, and describe some very interesting work in Cognitive Science. This report is a collection of abstracts from both faculty and graduate students in Computer Science, Psychology and Linguistics. We pride ourselves on the close working relations between these groups, as we believe that the communication among the different departments and the ongoing inter-departmental research not only improves the quality of our work, but makes much of that work possible

    Learning programs by learning from failures

    Full text link
    We describe an inductive logic programming (ILP) approach called learning from failures. In this approach, an ILP system (the learner) decomposes the learning problem into three separate stages: generate, test, and constrain. In the generate stage, the learner generates a hypothesis (a logic program) that satisfies a set of hypothesis constraints (constraints on the syntactic form of hypotheses). In the test stage, the learner tests the hypothesis against training examples. A hypothesis fails when it does not entail all the positive examples or entails a negative example. If a hypothesis fails, then, in the constrain stage, the learner learns constraints from the failed hypothesis to prune the hypothesis space, i.e. to constrain subsequent hypothesis generation. For instance, if a hypothesis is too general (entails a negative example), the constraints prune generalisations of the hypothesis. If a hypothesis is too specific (does not entail all the positive examples), the constraints prune specialisations of the hypothesis. This loop repeats until either (i) the learner finds a hypothesis that entails all the positive and none of the negative examples, or (ii) there are no more hypotheses to test. We introduce Popper, an ILP system that implements this approach by combining answer set programming and Prolog. Popper supports infinite problem domains, reasoning about lists and numbers, learning textually minimal programs, and learning recursive programs. Our experimental results on three domains (toy game problems, robot strategies, and list transformations) show that (i) constraints drastically improve learning performance, and (ii) Popper can outperform existing ILP systems, both in terms of predictive accuracies and learning times.Comment: Accepted for the machine learning journa
    • 

    corecore