8,939 research outputs found

    Interactive ray tracing of arbitrary implicits with SIMD interval arithmetic

    Get PDF
    Journal ArticleWe present a practical and efficient algorithm for interactively ray tracing arbitrary implicit surfaces. We use interval arithmetic (IA) both for robust root computation and guaranteed detection of topological features. In conjunction with ray tracing, this allows for rendering literally any programmable implicit function simply from its definition. Our method requires neither special hardware, nor preprocessing or storage of any data structure. Efficiency is achieved through SIMD optimization of both the interval arithmetic computation and coherent ray traversal algorithm, delivering interactive results even for complex implicit functions

    Interactive isosurface ray tracing of time-varying tetrahedral volumes

    Get PDF
    Journal ArticleAbstract- We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    A graphics architecture for ray tracing and photon mapping

    Get PDF
    Recently, methods were developed to render various global illumination effects with rasterization GPUs. Among those were hardware based ray tracing and photon mapping. However, due to current GPU??s inherent architectural limitations, the efficiency and throughput of these methods remained low. In this thesis, we propose a coherent rendering system that addresses these issues. First, we introduce new photon mapping and ray racing acceleration algorithms that facilitate data coherence and spatial locality, as well as eliminating unnecessary random memory accesses. A high level abstraction of the combined ray tracing and photon mapping streaming pipeline is introduced. Based on this abstraction, an efficient ray tracing and photon mapping GPU is designed. Using an event driven simulator, developed for this GPU, we verify and validate the proposed algorithms and architecture. Simulation results have validated better interactive performances compared to the current GPUs

    A Generalized Ray Formulation For Wave-Optics Rendering

    Full text link
    Under ray-optical light transport, the classical ray serves as a local and linear "point query" of light's behaviour. Such point queries are useful, and sophisticated path tracing and sampling techniques enable efficiently computing solutions to light transport problems in complex, real-world settings and environments. However, such formulations are firmly confined to the realm of ray optics, while many applications of interest, in computer graphics and computational optics, demand a more precise understanding of light. We rigorously formulate the generalized ray, which enables local and linear point queries of the wave-optical phase space. Furthermore, we present sample-solve: a simple method that serves as a novel link between path tracing and computational optics. We will show that this link enables the application of modern path tracing techniques for wave-optical rendering, improving upon the state-of-the-art in terms of the generality and accuracy of the formalism, ease of application, as well as performance. Sampling using generalized rays enables interactive rendering under rigorous wave optics, with orders-of-magnitude faster performance compared to existing techniques.Comment: For additional information, see https://ssteinberg.xyz/2023/03/27/rtplt
    corecore