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ABSTRACT

A Graphics Architecture for

Ray Tracing and Photon Mapping.

(August 2004)

Junyi Ling, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Rabi Mahapatra

Recently, methods were developed to render various global illumination effects with

rasterization GPUs. Among those were hardware based ray tracing and photon map-

ping. However, due to current GPU’s inherent architectural limitations, the efficiency

and throughput of these methods remained low. In this thesis, we propose a coherent

rendering system that addresses these issues. First, we introduce new photon map-

ping and ray racing acceleration algorithms that facilitate data coherence and spatial

locality, as well as eliminating unnecessary random memory accesses. A high level

abstraction of the combined ray tracing and photon mapping streaming pipeline is

introduced. Based on this abstraction, an efficient ray tracing and photon mapping

GPU is designed. Using an event driven simulator, developed for this GPU, we ver-

ify and validate the proposed algorithms and architecture. Simulation results have

validated better interactive performances compared to the current GPUs.
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CHAPTER I

INTRODUCTION

Three dimensional image synthesis (also referred to as rendering in this thesis) has

been one of the mostly studied topics in computer graphics. There are two key ap-

proaches to image synthesis: rasterization and ray tracing. Interactive rendering is

commonly addressed through rasterization. The visual quality of ray traced images

is generally considered to be superior to that of rasterization. This is due to the

capability of ray tracing to create indirect illumination effects such as soft shadow,

reflection and refraction. Photon mapping has been developed [1] to create realistic

diffused inter-reflection, caustics and subsurface scattering effects. Recently, there

have been a number of studies with programmable Graphics Processing Units (GPU)

that illustrate hardware accelerated ray tracing and photon mapping. However, im-

plementing ray tracing and photon mapping on current generation GPU is inefficient

and difficult. Modern rasterization GPU contain a number of Vertex and Fragment

processors as well as a fixed rasterization pipeline. Only a subset of fragment pro-

cessors has the data paths [2] [3] for ray tracing and photon mapping. The vast

majority of the rasterization hardware resources cannot be used for ray tracing or

photon mapping. We are motivated by the desire to create a better GPU, one that

is designed for ray tracing instead of rasterization.

In this thesis, we propose a novel GPU image synthesis system that is specifi-

cally designed to realize ray tracing and photon mapping. We introduce a set of new

acceleration algorithms to efficiently support this goal. These algorithms create data

coherence and enhance multi-nodal stream processing. We propose a GPU architec-

The journal model is IEEE Transactions on Automatic Control.
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ture to process these algorithms efficiently. The processor’s data paths are partitioned

into individual data streams. Each data stream sequentially passes through separate

PMs in order to create the final image. The complete rendering procedure takes place

locally within the GPU, without costly CPU read-backs as seen in previous architec-

tures. System-level simulation is setup to evaluate our GPU design and performance.

From the results, it is shown that the proposed pipeline rendering architecture can

perform ray tracing at interactive frame rates and that photon mapping combined

with ray tracing is possible at near interactive frame rates. We also show that using

multiple GPU rendering systems further improves performance of our rendering sys-

tem. In chapter II, we discuss the related works in this area. Chapter III introduces

a number of new algorithms for our rendering system. In chapter IV the hardware

architecture is introduced. In chapter V we present the results obtained with our

system. Chapter VI contains our conclusion and some discussions regarding possible

future studies in this area.
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CHAPTER II

PREVIOUS WORKS

Ray tracing and photon mapping are high-end image synthesis methods in computer

graphics. Many recent research efforts on these topics have been focused on the

quality of renderings, i.e. how closely the rendered images approximate the perceived

reality. A number of studies have also been conducted with hardware accelerated ray

tracing and photon mapping. In this section, we briefly introduce the current state

of GPU design, discussing existing algorithms for ray tracing and photon mapping,

as well as describe previous studies relevant to hardware aceelerated ray tracing and

photon mapping.

A. Background and Fundamentals

In the following section we briefly discribe the basic concepts in image synthesis and

graphics rendering hardware. We also define the technical terms used throughout this

thesis.

1. Rasterization and Rasterization Hardware

In interactive applications, rasterization is the preferred rendering method. Within

a GPU, the rasterization pipeline can be abtracted into three distinct stages: Trans-

formation and Lighting, Rasterization, and Per-Fragment/Per-Pixel operations. The

Transformation and Lighting operation performs geometric transformation, and as-

signs per-vertex lighting information according to the position and orientation of the

vertices to the light sources. The rasterization stage converts the original 3-D geom-

etry in “world-space” to a 2-D projection plane. During this process, most hardware

systems also clip and cull the geometry that is outside of the viewing frustum. The re-
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sulting geometry is turned into triangle fragments that can be lit locally on a per-pixel

basis. The resulting fragments are tested against the depth buffer. If the fragments’

depth values are less than the values stored in the depth buffer they are passed to

the frame buffer and rendered.

This has been the main rendering method for interactive image synthesis for

many years. This scheme however is not very flexible in terms of providing realistic

illumination models. The reflectance function of a surface is abstracted by its BRDF

(Bidirectional Reflectance Distribution Function). Introduced by Nicodemus et al in

1977 [4], this function give an accurate approximation of surface reflectance. It has

not been implemented by GPUs until very recently.

The recent major innovations in GPU design have been the programmable ver-

tex and fragment shaders. This limited programmability have allowed flexible local

shading models to be rendered at interactive frame rates. With multi-pass render-

ing limited indirect illuminations can also be rendered. Shadows are rendered with

either, stencil mapping or shadow mapping algorithms. Physically incorrect reflec-

tion and refraction are simulated with environment mapping. Pre-computed diffused

inter-reflection can be applied as textures to create the illusion of global illumination.

However, these methods suffer from the limitations of rasterization. The compu-

tation of physically accurate shadows is expensive. Accurate reflection and refraction

can not be computed for dynamic environments. More advanced global illumination

effects such as diffused inter-reflection and caustics can not be generated interactively.

Further more, with rasterization hardwares per pixel assypmtotic complexity of ras-

terization is O(n) time [5], with n denoting the number of polygons in the rendered

model.

It should be noted that there are methods that reduce the computational com-

plexity of rasterization. These methods have been implemented in software as a
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preprocessing step. There have also been hardware occlusion methods implemented

within GPUs recently, these methods do not reduce the asyptotic complexity of ras-

terization. We only consider hardware-based renderings in this thesis.

2. Ray Tracing

Ray tracing has been the preferred method for generating realistic images, because

ray tracing produces more global illumination effects. It is known for generating

realistic soft shadows, highly specular reflection, and refraction. Ray Tracing has

been considered traditionally as the slower of the two rendering methods. However,

it has been shown in [5] that with appropriate acceleration algorithms, the per-pixel

cost of ray tracing is O(log n) time, which is faster than rasterization.

The first ray tracing acceleration algorithm implemented is the Oct-tree traver-

sal algorithm proposed by Andrew Glassner [6] in 1984. Since then, many accel-

eration data structures have been implemented. They can be seperated into four

major catagories: Oct-tree based, grid based [7], BSP-tree based [8], and bounding-

hierarchy based [9]. The majority of these methods utilizes tree data structures for

storing geometric information.

3. Global Illumination

Diffused reflection effects can be generated with finite element radiosity methods

for Lambertian surfaces. Monte Carlo bidirectional path tracing can also generate

diffused inter-reflections. This is described in detail in [10]. Recently the method

of photon mapping introduced in [1] and [11] has become the preferred algorithm

for producing global illumination effects such as diffused inter-reflection, caustics and

subsurface scattering [12]. Both bidirectional path tracing and photon mapping

require two-pass ray tracing schemes to perform the reflected radiance estimation
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Fig. 1. Bidirectional Path Tracing.

computation.

a. Bi-directional Path Tracing

We call attention to the fact that there is at least two ray tracing passes in both

bi-directional path-tracing and photon mapping. In the case of bi-directional path

tracing, the light rays Ll, s.t. l ∈ {1, c}, where c is a constant are stochastically

emitted from a light source. A list of rays intersection points Pl, that ray Ll intersect

is stored. A single eye ray Le, is emitted from the eye point. Le is reflected and

refracted multiple time. For each point of reflection/refraction, a point Pe is stored.

The radiance flux at eye point in the direction of ray Le can be computed by solving

the visibility and form factor between all points in Pl to all points in Pe, see figure
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1. A large number of light rays has to be generated to reduce the visually disturbing

variance, created by this stochastic method.

b. Photon Mapping

Photon mapping is considered superior both finite element radiosity and Monte Carlo

bidirectional path tracing, because it is faster, conforms to arbitrary geometry, and

produces fewer artifacts. Figure 2 demonstrates global illuminstation effects gener-

ated with photon mapping.

Fig. 2. Photon Mapping. Image Curtosy of H. W. Jensen, UCSD.

In the case of photon mapping all photon rays are emitted in one pass. The

photons are reflected or refracted according to the reflectance function of the surfaces

in the ray’s path. The secondary rays are created via recursion from the primary

rays. A photon is saved in the photon list when it encounters a Lambertian surface.
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The photon is saved as three vectors: a position vector, a normal vector and a in-

tensity vector. The photon mapping algorithm efficiently stores, searches and filters

a 3-D photon space with a balanced Kd-tree data structure. A balanced Kd-tree is

essentially a BSP-tree data-structure that use the photons’ positions as axis-aligned

partitioning points. The left and right subtrees of any node are equal or similar in

weight, as illustrated in figure 3. This tree can be constructed in O(n log n) time and

we can find k nearest photons around a point p in O(log n + k) time.

Fig. 3. Kd-tree Data Structure
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B. Hardware Accelerated Ray Tracing

In the past, clustered PC’s, Supercomputers and off-line hardware accelerator systems

have been developed for ray tracing. These systems are expensive to set up and to

maintain. Their communication overhead is usually high and often require complex

software coordination.

Recent work presented in [13] [14] [5] [15] demonstrated ray tracing with

GPUs. Studies done by Carr et al [13] and Purcell et al [14] have demonstrated ray

tracing on the fragment processor of modern GPUs. Saarland University reported

in [5] [15] the design and simulation results of a ray tracing GPU, which rendered

complex images at interactive frame rates.

C. Hardware Accelerated Photon Mapping

Purcell et al. have implemented an uniform grid-base BSP tree structure for storing

and tracing photons with the fragment processor of commodity GPUs [16] [17].

Limited by the current GPU architecture, this photon mapping implementation is

fixed in size and in resolution. Only the fragment processor is used in this scheme and

the vast majority of the hardware resources are untapped. Several publications [18]

[19] also reported interactive rendering of only caustics with photon maps. In these

studies general purpose photon mapping for full global illumination was not tackled.

Ma and McCool [20] have proposed a hash table based low latency photon map in

2003, which may be used for hardware-based rendering. All reported hardware-based

photon mapping methods to date are less versatile and scalable than the original

Kd-tree implementation.
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CHAPTER III

ALGORITHMS AND RENDERING PIPELINE

For hardware based rendering, the disadvantage of using current software-based al-

gorithms for ray tracing and photon mapping is that it requires instruction sets not

present in GPUs. In the near future, GPUs are not likely to support recursion oper-

ations and complex memory operations [17]. In fact, it may be counter productive

to implement fully CPU-like general processors for graphics processing.

We propose new algorithmic approaches is different. We have designed a compre-

hensive rendering pipeline with both ray tracing and photon mapping in mind. We

propose new sorting and traversal algorithms that promotes parallelism, data spatial

locality and multi-stream processing. Similar axis aligned, balanced BSP trees are

used for accelerating both operations. Our algorithms are more flexible than the

previous hardware based algorithms. Like the balanced Kd-tree, our photon map is

de-coupled from geometry. In addition, our photon mapping and ray tracing acceler-

ation algorithms are highly optimized for the proposed hardware architecture.

A. Photon Mapping

Recently, NVidia and ATI have proposed the architectural trends for their next gener-

ation GPUs [3] [2] [17]. Based on these standards, we impose a number of constraints

while designing our pipelined architecture. Recursive calls and dynamic memory allo-

cations are forbidden. The memory units are treated as arrays of numbers or vectors,

whose sizes are determined at compile time. We allow limited indexing of arrays.

However, dynamic and flexible allocation of pointers are not allowed. Random access

reads with computed indexing are allowed but main memory can only be written in

a sequential fashion.
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Fig. 4. Photon Mapping Pipeline.

Figure 4 illustrates the pipeline of our photon mapping algorithm. The first

step in creating a photon map is backward ray tracing [10], i.e. tracing rays from a

light source. When the path of the photon is obstructed by a Lambertian surface, we

store that photon. Russian roulett method is used to eliminate photons depending

on the absorbance of the surface and construct secondary reflected/refracted photon

path arrays. When enough photons have been gathered we construct an acceleration

data structure from the initial photon list, so that it can be searched efficiently. Third

step is reflected radiance estimation. During this step we search for m photons closest

to point P , and estimate the reflected radiance of P . To better understand photon

mapping the reader is referred to several excellent sources [1] [11].

1. Sorting Photonmap Algorithm

A balanced axis-aligned Binary Spatial Partitioning (BSP) tree scheme is utilized

for our acceleration data structure. We balance the children of each node so that

both children contain equal or similar number of photons. We create partitioning

points based on density of the photon maps. The resulting BSP tree is not a grid-like

structure. The advantage of having this partitioning structure is that: First, There

is no empty voxels, hence there is also no need for hash-table based voxel traversal
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Fig. 5. Photon Map Tree Structure.

algorithm. Second, we guarantee a much more balanced tree structure with our

partitioning scheme. Third, we do not require the redistribution of photon powers

when a voxel is full. Fourth, a number of quality filtering methods can be applied

cheaply to this data structure.

Fig. 6. Photon Map Partitioning.

We construct a photon tree (see figure 5) as a heap of nodes. Each node, Ni,
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contains three 32-bit values, a memory index to the first photon of a voxel, *Pα, a

memory index to the last index of a voxel *Pω, and a floating point representation

of the partitioning point dividing that voxel, Xd. At compile time, we allocate a set

amount of main memory, M , for the partitioning node heap. The array contains C

leaf nodes, with the last node being 2C−1. No complex pointer operation is required

to index this data structure. For each parent node N with index Ni, its left child

is indexed by Ni<<1+1 and its right child is indexed by Ni<<1+2. (<< indicates left

shift, A << b indicates A left shifts by b radix points) The first node, Nf , on Level

l is indexed as N1<<l−1, and the last node, Nl, at Level l is indexed as Nf<<1. With

these characteristics, we can compute indices very cheaply with single-cycle integer

instructions with integer addition and shifting.

Figure 7 describes the photon map set up algorithm. To create a photon accel-

eration data structure we use a 2-pass sorting algorithm. The total sorting operation

cost O(n log n) in total time. But since the data accessed in the memory is contigu-

ous, there is virtually no penalty in terms of pipeline data hazards. There is also

the added advantage of a non-recursive algorithm - the elimination of the recursion

overhead.

The first pass is used to find the partitioning point(s). The partitioning point(s)

along an axisj mod 3 ideally is the median(s), X ′

d, of photon positions along axisj mod 3.

However, finding the exact median is intractable. We look for the center of mass along

axisj mod 3 instead. All photons are given equal partitioning weights. The center of

mass of each axis is the sum of all the photon positions along that axis divided by

the number of photons. We find 2l partitions at each level, l. The second pass is a

storage pass. We store all photons, Pl, such that Pl is less than partition point, Xd

in the left child. In the third pass, we store all Points Pr, such that Pr is equal or

greater than Xd to the right child. The array at each level i is exactly the same size as
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the array size at level i + 1. Photon lists P and P’ are two static blocks of swappable

memories of equal size created at compile time. Refer to Algorithm 1 for pseudocode

of acceleration data structure setup algorithm. This operation takes O(log n) passes

to complete. The additional division point creation pass does not increase overall

complexity of the algorithm. Further more, division point creation pass allows the

creation of balanced photon maps of arbitrary size. Like the balanced Kd-tree, our

data structure is also independent of the scene geometry.

2. Sampling and Filtering

To find exact k-nearest photons in our data structure is intractable. Instead, we

propose two general methods: volume filtering and stochastically reflected radiance

sampling. One could also view the photon map’s radiance estimation problem as the

problem of creating an efficient low-pass filter as indicated by H W Jensen in [11].

The reflected radiance flux at point x can be expressed with equation 3.1 [11]. Lr

is the reflected radiance term. x is the point of intersection. ~ω ′ denotes direction

of reflected radiance. ~ω is the direction of the incoming radiance. fr(x, ~ω′, ~ω) is the

BRDF of the surface at x. Φi(x, ~ω′) is flux at point x. A stands for the area.

Lr(x, ~ω) =
∫

Ωx

fr(x, ~ω′, ~ω)
d2Φi(x, ~ω′)

dAi

(3.1)

Lr(x, ~ω) ≈
n

∑

p=1

fr(x, ~ω′, ~ω)
∆Φp(xp, ~ω

′

p)

∆A
(3.2)

Equation 3.1 can be approximated in finite element terms with equation 3.2.

This equation is the equivalent of placing a simple disk filter on a plane orthogonal

to the normal of the surface at x. In this expression, xp are photon positions within

the area of ∆A. Substituting A with πr2 results an usable rendering equation. This
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filtering method works well when we can restrict r to the maximum radius of k-

photons. Because of the restrictions we placed on our instruction set, our algorithm

has a static search radius, r imposed. Equation 3.3 applies a hyper-cone filter on the

radiance estimation equation. C is a scaling constant. This 4-dimensional expression

enables the extraction of finer details than the disk filter. However, n in equation 3.3

is not bounded.

Lr(x, ~ω) ≈ C
n

∑

p=1

fr(x, ~ω′, ~ω)
∆Φp(xp, ~ω

′

p)

∆A
(1−

|xp − x|

∆D
) (3.3)

We can estimate reflectance using a stochastic sampling method 3.5, such that

the number of photons searched for reflected radiance estimation is bounded. In this

equation 3.5, k represents the number of leaf node voxels we sample. Expression 3.4

is the radiance estimate of a single stochastically sampled leaf-voxel, we then apply

the cone filter and estimate radiance for each voxel. The average radiance of the outer

summation loop yields the estimated reflected radiance at point x.

m
∑

p=1

fr(x, ~ω′, ~ω)
∆Φp(xp, ~ω

′

p)

∆As

(3.4)

Lr(x, ~ω) ≈
C

k

k
∑

s=1

m
∑

p=1

fr(x, ~ω′, ~ω)
∆Φp(xp, ~ω

′

p)

∆As

(1−
|xp − x|

∆Ds

) (3.5)

3. Tracing Photon Map Algorithm

Figure 8 illustrates an iterative algorithm that implements equation 3.3. We refer

to this algorithm as the m-voxel filter. It has the complexity of O(m log n), with m

denoting all the photons with in the search radius r and n denoting all the photons

inside the photon map. m is not bounded, therefore it cannot be reduced to a

constant. Under most circumstances, m is only a minute fraction of n. It is also
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less expensive to construct a cubic filter than a spherical filter. In a cubic filter only

1-axis has to be tested per pass.

We can use a stochastic sampling algorithm to sample k voxels. In this method,

we randomly generate k−1-points xk−1 around point x0. Also let xi, s.t. i ∈ {0, k−1},

be orthogonal to the normal at x0 to increase sampling efficiency. All sample point

set xi are within radius r from point x0. xk is passed from a similar algorithm to the

m-filter algorithm. Only k-voxels are searched. Reflected radiance is estimated for

each voxel within the set xk. We take the average reflect radiance as the overall value.

This algorithm corresponds to equation 3.5. Because we have a constant number of

k-voxels, and a constant number of C photons within each balanced voxel node, the

complexity of this algorithm is O(logn).

B. Ray Tracing Pipeline

We use a multi-pass rendering pipeline similar to that employed by Renderman. Mul-

tiple rendering passes create images with different effects that are super-imposed to

create the final image. In the case of simple ray casting, we have only two steps. One,

acceleration data structure setup. Two, ray trace and acceleration data traversal.

We construct an acceleration data structure similar to that used for photon

mapping. The geometric data is partitioned in a balanced axis-aligned BSP tree. This

gives us equal traversal time to every node in the structure, and similar number of

triangles within each leaf nodes. Shadow, reflection and refraction frames are rendered

in multiple passes. At the end of the ray-cast operation, we store the intersection

points, and normals. Depending on the user-specified surface discreption, shadow,

reflection and refraction masking maps can be generated. The shadow, reflective and

refactive (indirect illumination) rays are then created and traversed in seperate passes
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through the acceleration data structure. These seperate frames are summed for the

final rendering output. Figure 9 illustrates this iterative pipeline.

1. Geometry Partitioning Algorithm

Our balanced axis-aligned BSP tree, is created via iterative processes. As in the

photon map sorting algorithm, this is essentially the same algorithm as algorithm

1. However, we may have triangles, which occupy multiple voxels. An additional

expansion pass is added to the photon sorting algorithm. The expansion pass copies

the same triangle into 2 child nodes. This expansion of geometry increases the number

of triangles in the final data structure. Therefore, at compile time we allocate twenty

times the memory of the original triangle list in the main memory. Only the position

vectors of each vertex are duplicated. This duplication may seem expensive, however

the main memory is relatively inexpensive. It is extremely rare to have models with

over a quarter million triangles in any interactive applications. About 120MB of

memory is required for storing a accelerated data structure whose original size is

250,000 triangles. Currently, the cost of commodity DDR SDRAM is $150perGB.

The cost of 120MB of main memory is trivial compared to averall cost of a GPU.

2. Ray Tracing Algorithm, Traversal

There are 3-directional bits are associated with each ray R. Bit-0 corresponds to the

direction D of ray R in the x-direction. Bit-1 corresponds to D in the y-direction,

etc. An array of leaf-voxels, through which R passes, is constructed. The algorithm is

similar to algorithm 2. The directional bits direct the sorted voxel list such that the

ray always traverses the voxel nearer to the origin first. Once a minimum intersection

point is found for a ray, the current ray traversal loop is terminated and a new

traversal list is loaded.
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It is trivial to modify algorithms 1 and 2 to support triangle sorting and searching.

For brevity, the detailed algorithmic descriptions are not repeated here.
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C. Ray-Triangle Intersector

Because triangles are the the most commonly used primitives for interactive applica-

tions, it is the only geometric primitives supported in our design. There are a number

of different methods for ray triangle intersection tests. Ideally, our ray-triangle in-

tersection testing algorithm is one that does not have any conditional branches and

answers either “yes” or “no” at the end of the computation. For this purpose we

found that the Möller’s ray-triangle intersection test [21] to be the most suitable

(equation 3.6). In this equation, V0, V1 and V2 are vertices of a triangle, D is the

vector of a ray, E1 = V1 − V0, E2 = V2 − V0, T = O − V0, P = (D × E2) and

Q = (T × E1). For further details please refer to [21]. We construct an eleven stage

pipelined intersection tester based on this algorithm. A status word is passed along

with the triangle, and records of the address of the triangle and whether or not that

triangle is intersectable by the ray.
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input unsorted photon list P [photonCount]
this node index k ← 0
for all levels j ∈ {0, L− 1} do

axis of division d← j mod 3
First node in level j + 1→ kk, s.t. (kk ← (k � 1) + 1)
for all nodes N ∈ {k, kk − 1} do

partition point Xd ← 0
for all photons P [i], i ∈ {∗Nfirst, ∗Nlast} do

center of mass Cd[p] =
∑ P [i]d

plast−pfirst

end for

end for

output photon map P’ index, ii← 0
for all nodes N ∈ {k, kk − 1} do

left child node index Nl∗first ← N � 1 + 1
for all photons P [i], i ∈ {∗Nfirst, ∗Nlast} do

if P [i]d < Cd[p] then

P ′[ii++]← P [i]
end if

end for

Nl∗last ← ii;
right child node index Nr∗first ←− N � 1 + 2
for all photons P [i], i ∈ {∗Nfirst, ∗Nlast} do

if P [i]d ≥ Cd[p] then

P ′[ii++]← P [i]
end if

end for

∗Nrlast ← ii;
end for

swap P ⇔ P ′

end for

Fig. 7. Photon Map Setup
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Node Count C0 ← 1
Node list N0 ← ∅ N1 ← ∅
for all levels j ∈ {0, L− 1} do

axis of division d← j mod 3
for all nodes Ni s.t. i ∈ {0, C0} do

if Division Point, Dn0 > bbox minima, BBmin then

N1 ∪ (N0[i]� 1) + 1
C1 ← C1 + 1

end if

if Dn0 < BBmax then

N1 ∪ (N0[i]� 1) + 2
C1 ← C1 + 1

end if

end for

N0 ← N1 N1 ← ∅
C0 ← C1 C1 ← 0

end for

for all nodes N0[0→ C0] do

apply filter on P0 ← N0

end for

Fig. 8. Photon Map Search and Filtering Algorithm

Fig. 9. Ray Tracing Pipeline.
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CHAPTER IV

SYSTEM ARCHITECTURE

We classify the proposed system as a Multiple Instruction Multiple Data (MIMD)

application specific system. Our system can also be abstracted as a fine-grained,

multi-nodal stream processing system, with multiple Steaming Processing Elements

(SPE) computing different stages of a data stream.

Fig. 10. Multi-Stream Processor Architecture.

Figure 10 shows top-level abstraction of the data stream passing through each

of the Streaming Processing Elements (SPE). These abstracted units process local

data and pass the results to the next SPE back-to-back in a chain. This processing

arrangement is highly effecient because computation is isolated and communications

between SPEs are highly predictable.

It is worth noting that the photon mapping and ray tracing share much of the
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same data paths. The rendering pipeline’s behavior is similar to a normal hardware

pipeline. The difference is that the state transitions are asynchronous and the lower-

priority stream sequences can be preempted by a higher priority sequence.

Fig. 11. The Top-Level System Architecture.

A. Processing Modules

Figure 11 illustrates the top level design based on this paradigm. Each SPE is

implemented as a Processing Module (PM) in the proposed architecture. It consists

of four PMs: a Vertex PM, a Traversal PM, a Ray-Triangle Intersection PM and a

Fragment PM.



23

1. Programmable PMs

The Vertex PM, Traversal PM and Fragment PM are programmable. Vertex and

Fragment Processors share essentially the same instruction set and design. The

Traversal Processor is slightly different in that it has a direct data path from it to

the ray-triangle intersector. This data path allows the Traversal PM to pass memory

addresses of triangles directly to the ray-triangle intersection processor via a FIFO.

With the exception of the ray triangle intersection PM, all PMs are essentially pro-

grammable 4D vector processors. The instruction set share similar requirement to

new programmable GPUs from NVIDIA and ATI [16].

Cheap integer arithmetic operations, nested looping and data dependant branch-

ing are implemented in the instruction set. We also extend the random-access reads

to all three programmable PMs. These features make computed indexing of mem-

ory possible. These programmable PMs can not perform random writes because our

algorithms do not require such operations.

2. Processing Module Caching

Vertex and Fragment Processors contain two banks of cache memory each, the in-

struction cache and the data cache. In proposed simulation model, we set the data

cache for all three programmable processors to blocks the size of 8K×128-bits. We

set the instruction cache to an arbitrary number, because it is bounded by the com-

plexity of the application. The Traversal processor also contains a special FIFO bank

that is directly connected to the Ray-Triangle Intersection Unit.

We use duel-port SRAM for data cache on the programmable PMs. The duel

port RAM allows simultaneous paging and local access. The processor pre-fetches

the next memory block on the main memory if the index of the current operation Mi
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and index of first address of current page M ′

i are such that Mi > M ′

i + BlockSize
2

. This

happens while the memory from the last page is still being processed. Therefore, each

PM can page the Main Memory and execute instructions on its cache simultaneously.

Eight blocks of data cache memory are available to each of the Vertex, Traversal

and Fragment Processing Modules at any time. They work in pairs: cache block

0 ∪ 1, 2 ∪ 3...6 ∪ 7. Each pair contains a current memory page and a pre-fetched

memory page. The 4-cache block pairs allow multiple points of the main memory to

be accessed without stalls. All cache blocks are 1024× 128 - bits in size.

3. Ray-Triangle Intersection PM

Ray-Triangle Intersection PM is the only Fixed, non-programmable PM. It is shown

in figure 12 as an eleven–stage, pipelined processor. The Po, and D vector is loaded

in the PM in two-clock cycles at initialization. In regular mode, one vertex (96-bits)

is loaded at a time. Memory management Finite State Machine (FSM) load the three

vertices of a triangle in three clock cycles. Each pipelined stage, therefore, takes three

clock-cycles to complete. The FIFO, which is filled from the traversal processor with

the index pointers vertices controls withch triangles are loaded. A extra 32-bit header

is associated with each vertex. The header contains the index for the original normal

and texture coordinates associated with each vertex. The PM stores the minimal

intersection distance s for all intersected triangles Ti in the intersection list.

B. Memory Coherence

The proposed architecture is similar to a barrel-shifter at the top level. Each PM is

associated with a main-memory module. Every memory module is identical in size

so that every PM address every memory module in the same way. Each PM sees
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Fig. 12. Ray Triangle Intersection Processor.

only its “partner” memory module via the cross bar. When it is finished, it releases

that memory module and requests the next memory module for processing. The

arbitration is done with the memory controller, which controls a cross bar. When the

PMs request different frames, this top level memory control unit “swap” or “shifts”

the memory modules by re-routing the top-two address bits. It can also copy entire

blocks of data from one memory module to another.

We model our memory access scheme after commodity DDR Double Data Rate

Synchronous Dynamic Random Access Memory (SDRAM). It is relatively inexpensive

and it has good burst performance. However, even at 600 MHz access rate, this

SDRAM is still the bottle neck for the rendering pipeline. DDR memory also incurs

heavier penalties for a page misses than traditional SDRAM. The sequential access

of the proposed algorithms nullifies this shortcoming.

The four main memory modules operate in pairs. Memory modules 0&1 contain

data associated with image 0. Memory modules 2&3 contain the data stream for

image 1. Rendering process of that image is able to interrupt processes of the low-
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priority image. If interrupted, the PM finishes the ray/pixel operation it is working

on before context switching to the higher priority process. The rendering stream

terminates once the final image is produced. Memory controller assigns one of the

two images as the higher priority image according to the time of its arrival. The

priority of lower priority process is increased by the memory controller when the raw

data for the next frame is accepted.

C. Flow Control

The overall program flow control is directed by the Fragment PM and the control

unit. The related memory modules are linked back to the Vertex PM for additional

processing if additional rendering passes are required. This determination is given by

the assembly instructions written to the Fragment PM. Each rendering pass is similar

to the ray casting pass, which we demonstrate in figure 13. The final output image

is usually the composite of many seperate rendering passes.

Figure 13 is a state diagram that illustrates the state transitions of a normal

ray casting rendering pass. When each processor module is finished with its current

frame, it releases the memory module back to the top-level controller. Figure 14

illustrates this process for a simple photon mapping loop. The system has a 1-to-1

match of all memory modules and PMs at any time.

There exists a high degree of regularity within the proposed architecture. 5-

stage pipelined instruction architecture are uniformly applied to all programmable

PMs. This feature allows the design of each programmable PM to be nearly identical

to each other. Hardware granularity is an advantage gained through this design.

Further more, each PM and memory module is isolated from one another. Clocking

and signal skews between modules are reduced as long as consistency is maintained
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locally between a PMs and its current Memory Module.
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Fig. 13. Ray Casting State Diagram.
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Fig. 14. Photon Mapping Flow Diagram.
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CHAPTER V

RESULTS AND ANALYSIS

We report and analyse the experimental setup and benchmarks, pipeline throughput,

latency, image quality, and filtering in this section.

A. Experimental Setup and Benchmarks

A simulator for this architecture is written in C++. The simulator contains four

primary processing kernels, corresponding to each PM. Top-level data streams are

pushed through these kernels to simulate system performance. With this method, ac-

curate per-clock cycle delays and overall throughput is measured. We also record the

overhead of copying data from one memory bank to the other and context switching.

Detailed rendering data are recorded by the simulation engine. We report relavent re-

sults pertaining to the throughput of our pipeline and its latency in this chapter. This

simulator also allows the finetuning of algorithms to achieve optimal load balance.

In the first experiment, we render three bench mark images with direct illumina-

tions and shadows. In the subsequent renderings, we apply reflection, refraction and

photon mapping. The results of these trial runs are shown in Figure 15, 16 and 17

for these test cases.

To convert our clock-cycle based results to frames-per-second benchmark, a core

clock frequency is assigned. Main memory access time is assumed as the critical path

in the system. Many new commodity GPUs are connected to DDR SDRAM modules

rated at speeds greater than or equal to 600-Mhz. Therefore, we model our main

system frequency at 600-Mhz. Per Processing Module timing is computed using the

following equation for each of the processors.
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Ttotal =
∑

Tnorm +
∑

Tms +
∑

Tps +
∑

Tds (5.1)

The simulator accounts for the timing cost separately in each PM kernel. When

the individual PMs execute instructions from their local data cache, they are capable

of exicuting one pipelined, 4-D vector instruction, Tnorm, per-system clock cycle.

However, if there is a page-miss memory access then there is a penalty in terms of

the Row and Column access latencies, Tms. We model this delay to be 12 system

clock cycles. In the case of a conditional branch there is a chance for a 4-cycle

pipeline flush penalty, Tps. We estimate the per-processor timing by counting the

number system clock cycles on each processor. The overall timing also accounts for

the data stalls, Tds caused by memory swaps, data copies between memory modules,

and Processing Module handshakes. These handshake stalls exist because one PM

requires the data processed by another PM to start its job. These handshakes stalls

are artificially introduced by semaphores within the memory control module that

prevents the commencement of any process before the necessary data arrives. Each

kernel measures its own performance and the top module keeps track of the overall

throughput of the GPU.

B. Results and System Performance

To further analyse the system performance of proposed architecture, we compare

our results with other contemporary work. Schmittler et al. reported in [5], that

SaarCOR’s ray tracing performance at frame rates of 7.52 fps to 28.88 fps with a

single ray tracing core (RTC). While the throughput of the SaarCOR is impressive,

with a fixed rendering pipeline, this architecture is not designed for photon mapping.

It is also less flexible in terms of its shading options. Purcell et al’s commodity
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Table I. Scene With Ring Statistics.

646 triangles, 320× 240 Pixels, 20, 000 photons

type RCast Reflect Refract PMap

TVert .378 .378 .378 1.34

TTrav 24.4 31.6 68.6 64.4

Tisct 10.8 15.4 26.1 27.8

TFrag 4.12 4.42 6.28 16.9

TThru 24.8 32.0 68.9 64.9

FPS 24.2fps 18.8fps 8.71fps 9.24fps

GPU based stream ray tracing studies reported throughput of 1.8 fps to 10.5 fps

rendering simple ray-casting images without indirect illumination effects. Photon

mapping without accelerated ray tracing takes as long as 8.1 seconds for the Ring

scene and 64.3 seconds per frame [16] for the Cornell Box scene similar to ours [fig

17]. This is primarily due to the fact that most rasterization GPU resources can not

be utilized by the process stream.

Ray-traced scenes are rendered at frame rates as high as 24 fps with our archi-

tecture. This performance is comparable to the SaarCOR’s ray tracing performance.

Photon mapped images are rendered at near interactive frame rates. Photon Map-

ping performance of our GPU ranges from 3.037 fps for the room scene to 9.24 fps

for the ring scene. This is very close to interactive frame rates and on average above

ten-times faster than the commodity GPU-based rendering time. Details are show in
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Table II. Room Scene Statistics.

7812 triangles, 320× 240 Pixels, 80, 000 photons

type RayCast Reflect Refract PMap

TVert 4.57 4.57 4.57 8.47

TTrav 41.2 43.8 91.4 113

Tisct 47.7 51.9 110 123

TFrag 5.96 6.28 79.0 178

TThru 47.9 52.1 110.4 178

FPS 12.5fps 11.5fps 5.43fps 3.037fps

figures 15, 16 and 17 and table I, II and III.

We determined empirically that the load between different PMs is not entirely

balanced. However, we are able balance the load of Traversal and Ray-triangle inter-

section tester by altering the depth of our BSP-tree. We discovered that bln nc levels,

with n denoting the number of photons and/or triangles, yields good performance

balance for both ray tracing and photon mapping.

C. Quality of Images

Tables 1-3 lists the performance of proposed rendering system. Each column from left

to right represents the following: images with ray casting and shadows (RayCast),

images with added reflection pass (Reflect), images with the addition of both reflec-

tion and refraction (Refrat), and images with direct illumination, shadow reflection,
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Table III. Cornell Box Scene Statistics.

2604 triangles, 320× 320 Pixels, 120, 000 photons

type RCast Reflect Refract PMap

TVert 1.52 1.52 1.52 8.73

TTrav 42.7 46.3 75.8 107

Tisct 37.9 39.6 64.3 102

TFrag 8.14 8.49 10.3 210

TThru 43.0 46.7 76.1 210

FPS 14.0fps 12.9fps 7.88fps 2.86fps

refraction and photon mapping (PMap). System performances are measured in Mil-

lions of Clock Cycles. TVert is the processing time of the Vertex processor. TTrav

= time of the Traversal Processor, Tisct = time of the intersect process. TFrag =

Fragment processor time. Images are rendered at throughput rate of TThru. The

bottom row is the rendering throughput in terms of number of frames per second.

The four images in each set illustrate the difference between ray-casting with shadows,

reflection, refraction with Reflection and Photon Mapped Global Illumination.

Regarding photon mapping filtering methods, the stochastic sampling filter has

a heavier noise level than the m-filter. However, the m-filter algorithm is not bounded

in time, i.e. the worst search time for m photons within radius R of the sampling

point x, can not be reduced to a constant. However the stochastic sampling filter time

is bounded. If K-random photons are found within the radius R, we simply terminate
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Fig. 15. Scene With Ring. 646 triangles, 320× 240 Pixels, 20, 000 photons.

the search sequence. We discovered that the m-filter algorithm is efficient for rendering

caustics. The k-voxel stochastic sampling algorithm is faster for rendering defused

inter-reflection, with minimal increase of noise. We discovered that when rendering

with photon mapping, the gathering and filtering step is usually the critical path. In

the ring scene the traversal stage is costlier because many photon and eye-ray paths

do not yield any intersection.

D. Parallelism and Scalability

The entire rendering architecture is scaled-up cheaply by adding additional PMs. The

only scaling overhead is the additional memory frames associated with each dupli-

cated PM as well as the routing complexity and fan-out of the memory cross-bar.

The Traversal, Ray-triangle intersection testing and Fragment processing pipeline
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Fig. 16. Room Scene. 7812 triangles, 320× 240 Pixels, 80, 000 photons.

through-put scales non-linearly with each additional parallel streaming pipeline we

install. The overhead of creating the common acceleration data structure, memory

management and routing is constant. However, since each of the programmable pro-

cessing nodes are nearly identical, each PM is programmed to work on another PM’s

job when it is idle. This balances the load and nullifies the cost of the acceleration

data structure construction. This however, requires dynamic load-balancing control

scheme that is highly non-trivial and beyond the scope our current architecture.

1. Analytical Model for Multi-Pipeline Streams

Analytical models have been created to analyse the system performance of different

parallelization schemes. We parallelize our rendering system by duplicating the entire

rendering pipeline. We partition the image into q quadrants. Each pipeline render
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Fig. 17. Cornell Box Scene. 2604 triangles, 320× 320 Pixels, 120, 000 photons.

a quadrant Qi, i ∈ {1, q}, at a time to compose the final image. The initial geom-

etry/photon list are partitioned via a single Vertex PM. All of other operations can

be parallelized on a per-quadrant basis. Identical memory block can be copied to

each pipeline. This would also require a simple top level control unit to control the

final composition of the image. However, non-trivial algorithms have been designed

by previous studies for cluster rendering systems that duplicates acceleration data

structures on a “need-to-know” basis. These schemes can be applied to reduce load

of each rendering pipeline.
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Fig. 18. Multi Pipeline Rendering, Ring Scene.

Ttot ≈ A× Tvet0 +

∑N
i=1 B ×max(Tti, Tri, Tfi)

N
(5.2)

Equation 5.2 is an estimation of speed-up for the rendering process with ad-

ditional processing pipelines. Ttot is the total time. A, B are constants, such that,

if N = 1, Ttot = acquired simulation time. Tt denotes the timing cost of Traversal

PM. Tr denotes ray triangle intersection cost. Tf is the Fragment processor time. N

denotes the number of parallel rendering pipes. The results of these rendering times

are illustrated in figure 20 in terms of clock cycles.
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Fig. 19. Multi Pipeline Rendering, Room Scene.

Fig. 20. Multi Pipeline Rendering, Cornell-box Scene.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this paper we presented a new multi-nodal streaming processing paradigm and

architecture for ray tracing and photon mapping. Algorithms are designed to create

and exploit coherence within the spatial locality of the acceleration data structure.

These algorithms form the rendering pipeline that is mapped to our multi-stream

architecture. In simulation, the proposed architecture has demonstrated interactive

rendering with ray-tracing and near-interactive rendering with photonmapping.

This new architecture also has broader applications in computer science. As the

speed gap between Computational Units and Memory Units continues to increase,

the parallel stream processor’s ability to exploit memory bandwidth is going to be

increasingly advantageous. Many graphics applications rely on tree data structures to

accelerate their algorithms. Most of these data structures are currently created and

traversed recursively. These algorithms can be converted into iterative algorithms

using pointer-less data structures similar to our’s and benefit from similar hardware

architectures. Further more, ray tracing a complex scene is relevant beyond the

application of image synthesis. It is particularly useful in collision detection in phys-

ically based simulations. The same acceleration data structure can be used for both

rendering and physically based simulations.

With only four processing nodes in our design, we pre-schedule our kernels stat-

ically with a pre-defined, application specific rendering pipeline. There are inherent

inefficiencies in this scheduling scheme. Experiments have show that the proposed

architecture suffer as much as 50% PM idle time due to data starvation. A dynamic

scheduler can be implemented within the control module and may be considered as

a future research topic.
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The transition from rasterization GPUs to ray tracing GPUs would likely be a

gradual one. Issues of downward compatibility in drivers and Application Program-

ming Interfaces (API) will not allow an abrupt conversion. Our architecture is ideal

for this gradual mode of conversion. Rasterization hardware could remain vestigially

in parallel with our Traversal processor and Ray-triangle tester. The rasterization

unit can process the ray-casting portion of the rendering process. The ray tracing

specific Processing Modules can render the indirect illumination effect for which ray

tracing is better suited. This scheme allows the traditional APIs to be used on an

as-is basis, while gradually introducing the more advanced features to the software

developers.
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