7 research outputs found

    A Refactoring Documentation Bot

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153325/1/TSE_DocumentationBot__Copy_deep_blue.pd

    30 Years of Software Refactoring Research: A Systematic Literature Review

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155872/4/30YRefactoring.pd

    30 Years of Software Refactoring Research:A Systematic Literature Review

    Full text link
    Due to the growing complexity of software systems, there has been a dramatic increase and industry demand for tools and techniques on software refactoring in the last ten years, defined traditionally as a set of program transformations intended to improve the system design while preserving the behavior. Refactoring studies are expanded beyond code-level restructuring to be applied at different levels (architecture, model, requirements, etc.), adopted in many domains beyond the object-oriented paradigm (cloud computing, mobile, web, etc.), used in industrial settings and considered objectives beyond improving the design to include other non-functional requirements (e.g., improve performance, security, etc.). Thus, challenges to be addressed by refactoring work are, nowadays, beyond code transformation to include, but not limited to, scheduling the opportune time to carry refactoring, recommendations of specific refactoring activities, detection of refactoring opportunities, and testing the correctness of applied refactorings. Therefore, the refactoring research efforts are fragmented over several research communities, various domains, and objectives. To structure the field and existing research results, this paper provides a systematic literature review and analyzes the results of 3183 research papers on refactoring covering the last three decades to offer the most scalable and comprehensive literature review of existing refactoring research studies. Based on this survey, we created a taxonomy to classify the existing research, identified research trends, and highlighted gaps in the literature and avenues for further research.Comment: 23 page

    Commits Analysis for Software Refactoring Documentation and Recommendation

    Full text link
    Software projects frequently evolve to meet new requirements and/or to fix bugs. While this evolution is critical, it may have a negative impact on the quality of the system. To improve the quality of software systems, the first step is “detection" of code antipatterns to be restructured which can be considered as “refactoring opportunities". The second step is the “prioritization" of code fragments to be refactored/fixed. The third step is “recommendation" of refactorings to fix the detected quality issues. The fourth step is “testing" the recommended refactorings to evaluate their correctness. The fifth step is the “documentation" of the applied refactorings. In this thesis, we addressed the above five steps: 1. We designed a bi-level multi-objective optimization approach to enable the generation of antipattern examples that can improve the efficiency of detection rules for bad quality designs. 2. Regarding refactoring recommendations, we first identify refactoring opportunities by analyzing developer commit messages and quality of changed files, then we distill this knowledge into usable context driven refactoring recommendations to complement static and dynamic analysis of code. 3. We proposed an interactive refactoring recommendation approach that enables developers to pinpoint their preferences simultaneously in the objective (quality metrics) and decision (code location) spaces. 4. We proposed a semi-automated refactoring documentation bot that helps developers to interactively check and validate the documentation of the refactorings and/or quality improvements at the file level for each opened pull-request before being reviewed or merged to the master 5. We performed interviews with and a survey of practitioners as well as a quantitative analysis of 1,193 commit messages containing refactorings to establish a refactoring documentation model as a set of components. 6. We formulated the recommendation of code reviewers as a multi-objective search problem to balance the conflicting objectives of expertise, availability, and history of collaborations. 7. We built a dataset composed of 50,000+ composite code changes pertaining to more than 7,000 open-source projects. Then, we proposed and evaluated a new deep learning technique to generate commit messages for composite code changes based on an attentional encoder-decoder with two encoders and BERT embeddings.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/169486/1/Soumaya Rebai final dissertation.pdfDescription of Soumaya Rebai final dissertation.pdf : Dissertatio

    Towards using intelligent techniques to assist software specialists in their tasks

    Full text link
    L’automatisation et l’intelligence constituent des préoccupations majeures dans le domaine de l’Informatique. Avec l’évolution accrue de l’Intelligence Artificielle, les chercheurs et l’industrie se sont orientés vers l’utilisation des modèles d’apprentissage automatique et d’apprentissage profond pour optimiser les tâches, automatiser les pipelines et construire des systèmes intelligents. Les grandes capacités de l’Intelligence Artificielle ont rendu possible d’imiter et même surpasser l’intelligence humaine dans certains cas aussi bien que d’automatiser les tâches manuelles tout en augmentant la précision, la qualité et l’efficacité. En fait, l’accomplissement de tâches informatiques nécessite des connaissances, une expertise et des compétences bien spécifiques au domaine. Grâce aux puissantes capacités de l’intelligence artificielle, nous pouvons déduire ces connaissances en utilisant des techniques d’apprentissage automatique et profond appliquées à des données historiques représentant des expériences antérieures. Ceci permettra, éventuellement, d’alléger le fardeau des spécialistes logiciel et de débrider toute la puissance de l’intelligence humaine. Par conséquent, libérer les spécialistes de la corvée et des tâches ordinaires leurs permettra, certainement, de consacrer plus du temps à des activités plus précieuses. En particulier, l’Ingénierie dirigée par les modèles est un sous-domaine de l’informatique qui vise à élever le niveau d’abstraction des langages, d’automatiser la production des applications et de se concentrer davantage sur les spécificités du domaine. Ceci permet de déplacer l’effort mis sur l’implémentation vers un niveau plus élevé axé sur la conception, la prise de décision. Ainsi, ceci permet d’augmenter la qualité, l’efficacité et productivité de la création des applications. La conception des métamodèles est une tâche primordiale dans l’ingénierie dirigée par les modèles. Par conséquent, il est important de maintenir une bonne qualité des métamodèles étant donné qu’ils constituent un artéfact primaire et fondamental. Les mauvais choix de conception, ainsi que les changements conceptuels répétitifs dus à l’évolution permanente des exigences, pourraient dégrader la qualité du métamodèle. En effet, l’accumulation de mauvais choix de conception et la dégradation de la qualité pourraient entraîner des résultats négatifs sur le long terme. Ainsi, la restructuration des métamodèles est une tâche importante qui vise à améliorer et à maintenir une bonne qualité des métamodèles en termes de maintenabilité, réutilisabilité et extensibilité, etc. De plus, la tâche de restructuration des métamodèles est délicate et compliquée, notamment, lorsqu’il s’agit de grands modèles. De là, automatiser ou encore assister les architectes dans cette tâche est très bénéfique et avantageux. Par conséquent, les architectes de métamodèles pourraient se concentrer sur des tâches plus précieuses qui nécessitent de la créativité, de l’intuition et de l’intelligence humaine. Dans ce mémoire, nous proposons une cartographie des tâches qui pourraient être automatisées ou bien améliorées moyennant des techniques d’intelligence artificielle. Ensuite, nous sélectionnons la tâche de métamodélisation et nous essayons d’automatiser le processus de refactoring des métamodèles. A cet égard, nous proposons deux approches différentes: une première approche qui consiste à utiliser un algorithme génétique pour optimiser des critères de qualité et recommander des solutions de refactoring, et une seconde approche qui consiste à définir une spécification d’un métamodèle en entrée, encoder les attributs de qualité et l’absence des design smells comme un ensemble de contraintes et les satisfaire en utilisant Alloy.Automation and intelligence constitute a major preoccupation in the field of software engineering. With the great evolution of Artificial Intelligence, researchers and industry were steered to the use of Machine Learning and Deep Learning models to optimize tasks, automate pipelines, and build intelligent systems. The big capabilities of Artificial Intelligence make it possible to imitate and even outperform human intelligence in some cases as well as to automate manual tasks while rising accuracy, quality, and efficiency. In fact, accomplishing software-related tasks requires specific knowledge and skills. Thanks to the powerful capabilities of Artificial Intelligence, we could infer that expertise from historical experience using machine learning techniques. This would alleviate the burden on software specialists and allow them to focus on valuable tasks. In particular, Model-Driven Engineering is an evolving field that aims to raise the abstraction level of languages and to focus more on domain specificities. This allows shifting the effort put on the implementation and low-level programming to a higher point of view focused on design, architecture, and decision making. Thereby, this will increase the efficiency and productivity of creating applications. For its part, the design of metamodels is a substantial task in Model-Driven Engineering. Accordingly, it is important to maintain a high-level quality of metamodels because they constitute a primary and fundamental artifact. However, the bad design choices as well as the repetitive design modifications, due to the evolution of requirements, could deteriorate the quality of the metamodel. The accumulation of bad design choices and quality degradation could imply negative outcomes in the long term. Thus, refactoring metamodels is a very important task. It aims to improve and maintain good quality characteristics of metamodels such as maintainability, reusability, extendibility, etc. Moreover, the refactoring task of metamodels is complex, especially, when dealing with large designs. Therefore, automating and assisting architects in this task is advantageous since they could focus on more valuable tasks that require human intuition. In this thesis, we propose a cartography of the potential tasks that we could either automate or improve using Artificial Intelligence techniques. Then, we select the metamodeling task and we tackle the problem of metamodel refactoring. We suggest two different approaches: A first approach that consists of using a genetic algorithm to optimize set quality attributes and recommend candidate metamodel refactoring solutions. A second approach based on mathematical logic that consists of defining the specification of an input metamodel, encoding the quality attributes and the absence of smells as a set of constraints and finally satisfying these constraints using Alloy

    A User-aware Intelligent Refactoring for Discrete and Continuous Software Integration

    Full text link
    Successful software products evolve through a process of continual change. However, this process may weaken the design of the software and make it unnecessarily complex, leading to significantly reduced productivity and increased fault-proneness. Refactoring improves the software design while preserving overall functionality and behavior, and is an important technique in managing the growing complexity of software systems. Most of the existing work on software refactoring uses either an entirely manual or a fully automated approach. Manual refactoring is time-consuming, error-prone and unsuitable for large-scale, radical refactoring. Furthermore, fully automated refactoring yields a static list of refactorings which, when applied, leads to a new and often hard to comprehend design. In addition, it is challenging to merge these refactorings with other changes performed in parallel by developers. In this thesis, we propose a refactoring recommendation approach that dynamically adapts and interactively suggests refactorings to developers and takes their feedback into consideration. Our approach uses Non-dominated Sorting Genetic Algorithm (NSGAII) to find a set of good refactoring solutions that improve software quality while minimizing the deviation from the initial design. These refactoring solutions are then analyzed to extract interesting common features between them such as the frequently occurring refactorings in the best non-dominated solutions. We combined our interactive approach and unsupervised learning to reduce the developer’s interaction effort when refactoring a system. The unsupervised learning algorithm clusters the different trade-off solutions, called the Pareto front, to guide the developers in selecting their region of interests and reduce the number of refactoring options to explore. To reduce the interaction effort, we propose an approach to convert multi-objective search into a mono-objective one after interacting with the developer to identify a good refactoring solution based on their preferences. Since developers may want to focus on specific code locations, the ”Decision Space” is also important. Therefore, our interactive approach enables developers to pinpoint their preference simultaneously in the objective (quality metrics) and decision (code location) spaces. Due to an urgent need for refactoring tools that can support continuous integration and some recent development processes such as DevOps that are based on rapid releases, we propose, for the first time, an intelligent software refactoring bot, called RefBot. Our bot continuously monitors the software repository and find the best sequence of refactorings to fix the quality issues in Continous Integration/Continous Development (CI/CD) environments as a set of pull-requests generated after mining previous code changes to understand the profile of developers. We quantitatively and qualitatively evaluated the performance and effectiveness of our proposed approaches via a set of studies conducted with experienced developers who used our tools on both open source and industry projects.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/154775/1/Vahid Alizadeh Final Dissertation.pdfDescription of Vahid Alizadeh Final Dissertation.pdf : Dissertatio

    Explainable, Security-Aware and Dependency-Aware Framework for Intelligent Software Refactoring

    Full text link
    As software systems continue to grow in size and complexity, their maintenance continues to become more challenging and costly. Even for the most technologically sophisticated and competent organizations, building and maintaining high-performing software applications with high-quality-code is an extremely challenging and expensive endeavor. Software Refactoring is widely recognized as the key component for maintaining high-quality software by restructuring existing code and reducing technical debt. However, refactoring is difficult to achieve and often neglected due to several limitations in the existing refactoring techniques that reduce their effectiveness. These limitation include, but not limited to, detecting refactoring opportunities, recommending specific refactoring activities, and explaining the recommended changes. Existing techniques are mainly focused on the use of quality metrics such as coupling, cohesion, and the Quality Metrics for Object Oriented Design (QMOOD). However, there are many other factors identified in this work to assist and facilitate different maintenance activities for developers: 1. To structure the refactoring field and existing research results, this dissertation provides the most scalable and comprehensive systematic literature review analyzing the results of 3183 research papers on refactoring covering the last three decades. Based on this survey, we created a taxonomy to classify the existing research, identified research trends and highlighted gaps in the literature for further research. 2. To draw attention to what should be the current refactoring research focus from the developers’ perspective, we carried out the first large scale refactoring study on the most popular online Q&A forum for developers, Stack Overflow. We collected and analyzed posts to identify what developers ask about refactoring, the challenges that practitioners face when refactoring software systems, and what should be the current refactoring research focus from the developers’ perspective. 3. To improve the detection of refactoring opportunities in terms of quality and security in the context of mobile apps, we designed a framework that recommends the files to be refactored based on user reviews. We also considered the detection of refactoring opportunities in the context of web services. We proposed a machine learning-based approach that helps service providers and subscribers predict the quality of service with the least costs. Furthermore, to help developers make an accurate assessment of the quality of their software systems and decide if the code should be refactored, we propose a clustering-based approach to automatically identify the preferred benchmark to use for the quality assessment of a project. 4. Regarding the refactoring generation process, we proposed different techniques to enhance the change operators and seeding mechanism by using the history of applied refactorings and incorporating refactoring dependencies in order to improve the quality of the refactoring solutions. We also introduced the security aspect when generating refactoring recommendations, by investigating the possible impact of improving different quality attributes on a set of security metrics and finding the best trade-off between them. In another approach, we recommend refactorings to prioritize fixing quality issues in security-critical files, improve quality attributes and remove code smells. All the above contributions were validated at the large scale on thousands of open source and industry projects in collaboration with industry partners and the open source community. The contributions of this dissertation are integrated in a cloud-based refactoring framework which is currently used by practitioners.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/171082/1/Chaima Abid Final Dissertation.pdfDescription of Chaima Abid Final Dissertation.pdf : Dissertatio
    corecore