6 research outputs found

    DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph

    Full text link
    In this work we create a question answering dataset over the DBLP scholarly knowledge graph (KG). DBLP is an on-line reference for bibliographic information on major computer science publications that indexes over 4.4 million publications published by more than 2.2 million authors. Our dataset consists of 10,000 question answer pairs with the corresponding SPARQL queries which can be executed over the DBLP KG to fetch the correct answer. DBLP-QuAD is the largest scholarly question answering dataset.Comment: 12 pages ceur-ws 1 column accepted at International Bibliometric Information Retrieval Workshp @ ECIR 202

    PURSUhInT: In Search of Informative Hint Points Based on Layer Clustering for Knowledge Distillation

    Full text link
    We propose a novel knowledge distillation methodology for compressing deep neural networks. One of the most efficient methods for knowledge distillation is hint distillation, where the student model is injected with information (hints) from several different layers of the teacher model. Although the selection of hint points can drastically alter the compression performance, there is no systematic approach for selecting them, other than brute-force hyper-parameter search. We propose a clustering based hint selection methodology, where the layers of teacher model are clustered with respect to several metrics and the cluster centers are used as the hint points. The proposed approach is validated in CIFAR-100 dataset, where ResNet-110 network was used as the teacher model. Our results show that hint points selected by our algorithm results in superior compression performance with respect to state-of-the-art knowledge distillation algorithms on the same student models and datasets

    Out of Thin Air: Exploring Data-Free Adversarial Robustness Distillation

    Full text link
    Adversarial Robustness Distillation (ARD) is a promising task to solve the issue of limited adversarial robustness of small capacity models while optimizing the expensive computational costs of Adversarial Training (AT). Despite the good robust performance, the existing ARD methods are still impractical to deploy in natural high-security scenes due to these methods rely entirely on original or publicly available data with a similar distribution. In fact, these data are almost always private, specific, and distinctive for scenes that require high robustness. To tackle these issues, we propose a challenging but significant task called Data-Free Adversarial Robustness Distillation (DFARD), which aims to train small, easily deployable, robust models without relying on data. We demonstrate that the challenge lies in the lower upper bound of knowledge transfer information, making it crucial to mining and transferring knowledge more efficiently. Inspired by human education, we design a plug-and-play Interactive Temperature Adjustment (ITA) strategy to improve the efficiency of knowledge transfer and propose an Adaptive Generator Balance (AGB) module to retain more data information. Our method uses adaptive hyperparameters to avoid a large number of parameter tuning, which significantly outperforms the combination of existing techniques. Meanwhile, our method achieves stable and reliable performance on multiple benchmarks.Comment: Accepted by AAAI2

    Knowledge Distillation and Continual Learning for Optimized Deep Neural Networks

    Get PDF
    Over the past few years, deep learning (DL) has been achieving state-of-theart performance on various human tasks such as speech generation, language translation, image segmentation, and object detection. While traditional machine learning models require hand-crafted features, deep learning algorithms can automatically extract discriminative features and learn complex knowledge from large datasets. This powerful learning ability makes deep learning models attractive to both academia and big corporations. Despite their popularity, deep learning methods still have two main limitations: large memory consumption and catastrophic knowledge forgetting. First, DL algorithms use very deep neural networks (DNNs) with many billion parameters, which have a big model size and a slow inference speed. This restricts the application of DNNs in resource-constraint devices such as mobile phones and autonomous vehicles. Second, DNNs are known to suffer from catastrophic forgetting. When incrementally learning new tasks, the model performance on old tasks significantly drops. The ability to accommodate new knowledge while retaining previously learned knowledge is called continual learning. Since the realworld environments in which the model operates are always evolving, a robust neural network needs to have this continual learning ability for adapting to new changes
    corecore