Adversarial Robustness Distillation (ARD) is a promising task to solve the
issue of limited adversarial robustness of small capacity models while
optimizing the expensive computational costs of Adversarial Training (AT).
Despite the good robust performance, the existing ARD methods are still
impractical to deploy in natural high-security scenes due to these methods rely
entirely on original or publicly available data with a similar distribution. In
fact, these data are almost always private, specific, and distinctive for
scenes that require high robustness. To tackle these issues, we propose a
challenging but significant task called Data-Free Adversarial Robustness
Distillation (DFARD), which aims to train small, easily deployable, robust
models without relying on data. We demonstrate that the challenge lies in the
lower upper bound of knowledge transfer information, making it crucial to
mining and transferring knowledge more efficiently. Inspired by human
education, we design a plug-and-play Interactive Temperature Adjustment (ITA)
strategy to improve the efficiency of knowledge transfer and propose an
Adaptive Generator Balance (AGB) module to retain more data information. Our
method uses adaptive hyperparameters to avoid a large number of parameter
tuning, which significantly outperforms the combination of existing techniques.
Meanwhile, our method achieves stable and reliable performance on multiple
benchmarks.Comment: Accepted by AAAI2