55,364 research outputs found

    INDEMICS: An Interactive High-Performance Computing Framework for Data Intensive Epidemic Modeling

    Get PDF
    We describe the design and prototype implementation of Indemics (_Interactive; Epi_demic; _Simulation;)—a modeling environment utilizing high-performance computing technologies for supporting complex epidemic simulations. Indemics can support policy analysts and epidemiologists interested in planning and control of pandemics. Indemics goes beyond traditional epidemic simulations by providing a simple and powerful way to represent and analyze policy-based as well as individual-based adaptive interventions. Users can also stop the simulation at any point, assess the state of the simulated system, and add additional interventions. Indemics is available to end-users via a web-based interface. Detailed performance analysis shows that Indemics greatly enhances the capability and productivity of simulating complex intervention strategies with a marginal decrease in performance. We also demonstrate how Indemics was applied in some real case studies where complex interventions were implemented

    Decision makers\u27 experience of participatory dynamic simulation modelling: Methods for public health policy

    Get PDF
    Background: Systems science methods such as dynamic simulation modelling are well suited to address questions about public health policy as they consider the complexity, context and dynamic nature of system-wide behaviours. Advances in technology have led to increased accessibility and interest in systems methods to address complex health policy issues. However, the involvement of policy decision makers in health-related simulation model development has been lacking. Where end-users have been included, there has been limited examination of their experience of the participatory modelling process and their views about the utility of the findings. This paper reports the experience of end-user decision makers, including senior public health policy makers and health service providers, who participated in three participatory simulation modelling for health policy case studies (alcohol related harm, childhood obesity prevention, diabetes in pregnancy), and their perceptions of the value and efficacy of this method in an applied health sector context. Methods: Semi-structured interviews were conducted with end-user participants from three participatory simulation modelling case studies in Australian real-world policy settings. Interviewees were employees of government agencies with jurisdiction over policy and program decisions and were purposively selected to include perspectives at different stages of model development. Results: The ‘co-production’ aspect of the participatory approach was highly valued. It was reported as an essential component of building understanding of the modelling process, and thus trust in the model and its outputs as a decision-support tool. The unique benefits of simulation modelling included its capacity to explore interactions of risk factors and combined interventions, and the impact of scaling up interventions. Participants also valued simulating new interventions prior to implementation in the real world, and the comprehensive mapping of evidence and its gaps to prioritise future research. The participatory aspect of simulation modelling was time and resource intensive and therefore most suited to high priority complex topics with contested options for intervening. Conclusion: These findings highlight the value of a participatory approach to dynamic simulation modelling to support its utility in applied health policy settings

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    CAST – City analysis simulation tool: an integrated model of land use, population, transport and economics

    Get PDF
    The paper reports on research into city modelling based on principles of Science of Complexity. It focuses on integration of major processes in cities, such as economics, land use, transport and population movement. This is achieved using an extended Cellular Automata model, which allows cells to form networks, and operate on individual financial budgets. There are 22 cell types with individual processes in them. The formation of networks is based on supply and demand mechanisms for products, skills, accommodation, and services. Demand for transport is obtained as an emergent property of the system resulting from the network connectivity and relevant economic mechanisms. Population movement is a consequence of mechanisms in the housing and skill markets. Income and expenditure of cells are self-regulated through market mechanisms and changing patterns of land use are a consequence of collective interaction of all mechanisms in the model, which are integrated through emergence

    MULTI AGENT-BASED ENVIRONMENTAL LANDSCAPE (MABEL) - AN ARTIFICIAL INTELLIGENCE SIMULATION MODEL: SOME EARLY ASSESSMENTS

    Get PDF
    The Multi Agent-Based Environmental Landscape model (MABEL) introduces a Distributed Artificial Intelligence (DAI) systemic methodology, to simulate land use and transformation changes over time and space. Computational agents represent abstract relations among geographic, environmental, human and socio-economic variables, with respect to land transformation pattern changes. A multi-agent environment is developed providing task-nonspecific problem-solving abilities, flexibility on achieving goals and representing existing relations observed in real-world scenarios, and goal-based efficiency. Intelligent MABEL agents acquire spatial expressions and perform specific tasks demonstrating autonomy, environmental interactions, communication and cooperation, reactivity and proactivity, reasoning and learning capabilities. Their decisions maximize both task-specific marginal utility for their actions and joint, weighted marginal utility for their time-stepping. Agent behavior is achieved by personalizing a dynamic utility-based knowledge base through sequential GIS filtering, probability-distributed weighting, joint probability Bayesian correlational weighting, and goal-based distributional properties, applied to socio-economic and behavioral criteria. First-order logics, heuristics and appropriation of time-step sequences employed, provide a simulation-able environment, capable of re-generating space-time evolution of the agents.Environmental Economics and Policy,

    Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity.

    Get PDF
    A crisis continues to brew within the pharmaceutical research and development (R&D) enterprise: productivity continues declining as costs rise, despite ongoing, often dramatic scientific and technical advances. To reverse this trend, we offer various suggestions for both the expansion and broader adoption of modeling and simulation (M&S) methods. We suggest strategies and scenarios intended to enable new M&S use cases that directly engage R&D knowledge generation and build actionable mechanistic insight, thereby opening the door to enhanced productivity. What M&S requirements must be satisfied to access and open the door, and begin reversing the productivity decline? Can current methods and tools fulfill the requirements, or are new methods necessary? We draw on the relevant, recent literature to provide and explore answers. In so doing, we identify essential, key roles for agent-based and other methods. We assemble a list of requirements necessary for M&S to meet the diverse needs distilled from a collection of research, review, and opinion articles. We argue that to realize its full potential, M&S should be actualized within a larger information technology framework--a dynamic knowledge repository--wherein models of various types execute, evolve, and increase in accuracy over time. We offer some details of the issues that must be addressed for such a repository to accrue the capabilities needed to reverse the productivity decline

    Systemic intervention

    Get PDF
    This paper describes the practice of systemic intervention, emphasizing (1) the need to explore stakeholder values and boundaries for analysis; (2) responses to the challenges of marginalization processes; and (3) a wide, pluralistic range of methods from the systems literature and beyond to create a flexible and responsive systemic action research practice. After presenting an outline of systemic intervention, the author discusses several other well-tested systems approaches with a view to identifying their potential for further supporting systemic intervention practice, and action research more generally. Two practical examples of systemic intervention are provided to illustrate the arguments
    • …
    corecore