3 research outputs found

    Floodopoly: enhancing the learning experience of students in water engineering courses

    Get PDF
    This study focuses on the utilisation of lab-based activities to enhance the learning experience of engineering students studying water engineering and geosciences courses. Specifically, the use of “floodopoly” as a physical model demonstration in improving the students’ understanding of the relevant processes of flooding, infrastructure scour and sediment transport, and improve retention and performance in simulation of these processes in engineering design courses, is discussed. The effectiveness of lab-based demonstration is explored using a survey assessing the weight of various factors that might influence students’ performance and satisfaction. It reveals how lab-centred learning, overall course success is linked with student motivation and the students’ perception of an inclusive teaching environment. It also explores the effectiveness of the implementation of student-centred and inquiry-guided teaching and various methods of assessment. The analysis and discussion are informed by students’ responses to a specifically designed questionnaire, showing an improvement of the satisfaction rates compared to traditional class-based learning modules. For example, more students (85%) reported that they perceived the lab-based environment as an excellent contribution to their learning experience, while less students (about 57%) were as satisfied for a traditional class-based course delivery. Such findings can be used to improve students’ learning experience by introducing physical model demonstrations, similar to those offered herein

    Virtual Reality Laboratories in Engineering Blended Learning Environments: Challenges and Opportunities

    Get PDF
    A great number of educational institutions worldwide have had their activities partially or fully interrupted following the outbreak of the COVID-19 pandemic. Consequently, universities have had to take the necessary steps in order to adapt their teaching, including laboratory workshops, to a fully online or mixed mode of delivery while maintaining their academic standards and providing a high-quality student experience. This transition has required, among other efforts, adequate investments in tools, accessibility, content development, and competences as well as appropriate training for both the teaching and administrative staff. In such a complex scenario, Virtual Reality Laboratories (VRLabs), which in the past already proved themselves to be efficient tools supporting the traditional practical activities, could well represent a valid alternative in the hybrid didactic mode of the contemporary educational landscape, rethinking the educational proposal in light of the indications coming from the scientific literature in the pedagogical field. In this context, the present work carries out a critical review of the existent virtual labs developed in the Engineering departments in the last ten years (2010-2020) and includes a pre-pandemic experience of a VRLab tool-StreamFlowVR-within the Hydraulics course of Basilicata University, Italy. This analysis is aimed at highlighting how ready VRLabs are to be exploited not only in emergency but also in ordinary situations, together with valorising an interdisciplinary dialogue between the pedagogical and technological viewpoints, in order to progressively foster a high-quality and evidence-based educational experience

    Teaching and Learning of Fluid Mechanics

    Get PDF
    This book contains research on the pedagogical aspects of fluid mechanics and includes case studies, lesson plans, articles on historical aspects of fluid mechanics, and novel and interesting experiments and theoretical calculations that convey complex ideas in creative ways. The current volume showcases the teaching practices of fluid dynamicists from different disciplines, ranging from mathematics, physics, mechanical engineering, and environmental engineering to chemical engineering. The suitability of these articles ranges from early undergraduate to graduate level courses and can be read by faculty and students alike. We hope this collection will encourage cross-disciplinary pedagogical practices and give students a glimpse of the wide range of applications of fluid dynamics
    corecore