1,531 research outputs found

    Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits

    Full text link
    Cortico-basal ganglia-thalamic (CBT) neural circuits are critical modulators of cognitive and motor function. When compromised, these circuits contribute to neurological and psychiatric disorders, such as Parkinson's disease (PD). In PD, motor deficits correlate with the emergence of exaggerated beta frequency (15-30 Hz) oscillations throughout the CBT network. However, little is known about how specific cell types within individual CBT brain regions support the generation, propagation, and interaction of oscillatory dynamics throughout the CBT circuit or how specific oscillatory dynamics are related to motor function. Here, we investigated the role of striatal cholinergic interneurons (SChIs) in generating beta and gamma oscillations in cortical-striatal circuits and in influencing movement behavior. We found that selective stimulation of SChIs via optogenetics in normal mice robustly and reversibly amplified beta and gamma oscillations that are supported by distinct mechanisms within striatal-cortical circuits. Whereas beta oscillations are supported robustly in the striatum and all layers of primary motor cortex (M1) through a muscarinic-receptor mediated mechanism, gamma oscillations are largely restricted to the striatum and the deeper layers of M1. Finally, SChI activation led to parkinsonian-like motor deficits in otherwise normal mice. These results highlight the important role of striatal cholinergic interneurons in supporting oscillations in the CBT network that are closely related to movement and parkinsonian motor symptoms.DP2 NS082126 - NINDS NIH HHS; R01 NS081716 - NINDS NIH HHS; R21 NS078660 - NINDS NIH HHShttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896681/Published versio

    Neurosystems: brain rhythms and cognitive processing

    Get PDF
    Neuronal rhythms are ubiquitous features of brain dynamics, and are highly correlated with cognitive processing. However, the relationship between the physiological mechanisms producing these rhythms and the functions associated with the rhythms remains mysterious. This article investigates the contributions of rhythms to basic cognitive computations (such as filtering signals by coherence and/or frequency) and to major cognitive functions (such as attention and multi-modal coordination). We offer support to the premise that the physiology underlying brain rhythms plays an essential role in how these rhythms facilitate some cognitive operations.098352 - Wellcome Trust; 5R01NS067199 - NINDS NIH HH

    Oscillatory multiplexing of neural population codes for interval timing and working memory

    Get PDF
    Interval timing and working memory are critical components of cognition that are supported by neural oscillations in prefrontal-striatal-hippocampal circuits. In this review, the properties of interval timing and working memory are explored in terms of behavioral, anatomical, pharmacological, and neurophysiological findings. We then describe the various neurobiological theories that have been developed to explain these cognitive processes - largely independent of each other. Following this, a coupled excitatory - inhibitory oscillation (EIO) model of temporal processing is proposed to address the shared oscillatory properties of interval timing and working memory. Using this integrative approach, we describe a hybrid model explaining how interval timing and working memory can originate from the same oscillatory processes, but differ in terms of which dimension of the neural oscillation is utilized for the extraction of item, temporal order, and duration information. This extension of the striatal beat-frequency (SBF) model of interval timing (Matell and Meck, 2000, 2004) is based on prefrontal-striatal-hippocampal circuit dynamics and has direct relevance to the pathophysiological distortions observed in time perception and working memory in a variety of psychiatric and neurological conditions. (C) 2014 Elsevier Ltd. All rights reserved.</p

    The role of oscillation population activity in cortico-basal ganglia circuits.

    Get PDF
    The basal ganglia (BG) are a group of subcortical brain nuclei that are anatomically situated between the cortex and thalamus. Hitherto, models of basal ganglia function have been based solely on the anatomical connectivity and changes in the rate of neurons mediated by inhibitory and excitatory neurotransmitter interactions and modulated by dopamine. Depletion of striatal dopamine as occurs in Parkinson's Disease (PD) however, leads primarily to changes in the rhythmicity of basal ganglia neurons. The general aim of this thesis is to use frontal electrocorticogram (ECoG) and basal ganglia local field potential (LFP) recordings in the rat to further investigate the putative role for oscillations and synchronisation in these structures in the healthy and dopamine depleted brain. In the awake animal, lesion of the SNc lead to a dramatic increase in the power and synchronisation of P-frequency band oscillations in the cortex and subthalamic nucleus (STN) compared to the sham lesioned animal. These results are highly similar to those in human patients and provide further evidence for a direct pathophysological role for p-frequency band oscillations in PD. In the healthy, anaesthetised animal, LFPs recorded in the STN, globus pallidus (GP) and substantia nigra pars reticulata (SNr) were all found to be coherent with the ECoG. A detailed analysis of the interdependence and direction of these activities during two different brain states, prominent slow wave activity (SWA) and global activation, lead to the hypothesis that there were state dependant changes in the dominance of the cortico-subthalamic and cortico-striatal pathways. Multiple LFP recordings in the striatum and GP provided further evidence for this hypothesis, as coherence between the ECoG and GP was found to be dependent on the striatum. Together these results suggest that oscillations and synchronisation may mediate information flow in cortico-basal ganglia networks in both health and disease

    Mechanisms underlying cortical resonant states: implications for levodopa-induced dyskinesia

    Get PDF
    A common observation in recordings of neuronal activity from the cerebral cortex is that populations of neurons show patterns of synchronized oscillatory activity. However, it has been suggested that neuronal synchronization can, in certain pathological conditions, become excessive and possibly have a pathogenic role. In particular, aberrant oscillatory activation patterns have been implicated in conditions involving cortical dysfunction. We here review the mechanisms thought to be involved in the generation of cortical oscillations and discuss their relevance in relation to a recent finding indicating that high-frequency oscillations in the cerebral cortex have an important role in the generation of levodopa-induced dyskinesia. On the basis of these insights, it is suggested that the identification of physiological changes associated with symptoms of disease is a particularly important first step toward a more rapid development of novel treatment strategies

    Brain rhythms in small and large networks of neurons

    Full text link
    I studied two neuronal networks, one small to investigate the interaction of brain rhythms and one large, to investigate the effects of multiple connectivity types on resonance in a target network. Theta (4 − 8 Hz) and gamma (30 − 80 Hz) rhythms are commonly associated with memory and learning. The precision of co-firing between neurons and incoming inputs is critical in these cognitive functions. To understand the interaction of the two rhythms, I considered a single model neuron with an inhibitory autapse and M- current, under forcing from gamma pulses and a sinusoidal current of theta frequency. The M-current has a long time constant (~90 ms) and generates resonance at theta frequencies. I found that this slow M-current contributes to the precise co-firing between the network and fast gamma pulses in the presence of a slow sinusoidal forcing. This current expands the range of phase-locking frequency to the gamma input, counteracts the slow theta forcing, and admits bistability in some parameter range. The effects of the M-current balancing the theta forcing are reduced if the sinusoidal current is faster than the theta frequency band. For these results I used averaging methods, geometric singular perturbation theory, and bifurcation analysis. Beta rhythms (10 − 30 Hz) are associated with motor functions; patients with Parkinson’s Disease display prominent pathological beta rhythms in the basal ganglia. Research has suggested that a sub-circuit of the basal ganglia, subthalamic nucleus- globus pallidus externus (STN-GPe), is a potential generator of beta rhythms. The anatomical structure of STN-GPe also suggests that it may act as an amplifier of incoming rhythms. I considered a model of this sub-circuit based on the work of Kumar et al. (2011) and studied the mechanism of its intrinsic oscillation and how it might amplify inputs from the striatum. Through parameter sweeps, I found that the network manifests a robust intrinsic beta oscillation, not changeable by moderate parameter variation. Surprisingly, this STN-GPe network only amplifies rhythms of or close to the intrinsic oscillatory frequency, regardless of three different connection structures simulated. However, introducing heterogeneity into the network can make the network amplify rhythms of a wide range of frequencies

    Global neural rhythm control by local neuromodulation

    Get PDF
    Neural oscillations are a ubiquitous form of neural activity seen across scales and modalities. These neural rhythms correlate with diverse cognitive functions and brain states. One mechanism for changing the oscillatory dynamics of large neuronal populations is through neuromodulator activity. An intriguing phenomenon explored here is when local neuromodulation of a distinct neuron type within a single brain nucleus exerts a powerful influence on global cortical rhythms. One approach to investigate the impact of local circuits on global rhythms is through optogenetic techniques. My first project involves the statistical analysis of electrophysiological recordings of an optogenetically-mediated Parkinsonian phenotype. Empirical studies demonstrate that Parkinsonian motor deficits correlate with the emergence of exaggerated beta frequency (15-30 Hz) oscillations throughout the cortico-basal ganglia-thalamic network. However, the mechanism of these aberrant oscillatory dynamics is not well understood. A previous modeling study predicted that cholinergic neuromodulation of medium spiny neurons in the striatum of the basal ganglia may mediate the pathologic beta rhythm. Here, this hypothesis was tested using selective optogenetic stimulation of striatal cholinergic interneurons in normal mice; stimulation robustly and reversibly amplified beta oscillations and Parkinsonian motor symptoms. The modulation of global rhythms by local networks was further studied using computational modeling in the context of intrathalamic neuromodulation. While intrathalamic vasoactive intestinal peptide (VIP) is known to cause long-lasting excitation in vitro, its in vivo dynamical effects have not been reported. Here, biophysical computational models were used to elucidate the impact of VIP on thalamocortical dynamics during sleep and propofol general anesthesia. The modeling results suggest that VIP can form robust sleep spindle oscillations and control aspects of sleep architecture through a novel homeostatic mechanism. This homeostatic mechanism would be inhibited by general anesthesia, representing a new mechanism contributing to anesthetic-induced loss of consciousness. While the previous two projects differed in their use of empirical versus theoretical methods, a challenge common to both domains is the difficulty in visualizing and analyzing large multi-dimensional datasets. A tool to mitigate these issues is introduced here: GIMBL-Vis is a Graphical Interactive Multi-dimensional extensiBLe Visualization toolbox for Matlab. This toolbox simplifies the process of exploring multi-dimensional data in Matlab by providing a graphical interface for visualization and analysis. Furthermore, it provides an extensible open platform for distributed development by the community

    The Role of Inhibition in Generating and Controlling Parkinson’s Disease Oscillations in the Basal Ganglia

    Get PDF
    Movement disorders in Parkinson’s disease (PD) are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe) is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep-brain-stimulation (DBS). These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behavior under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients
    • 

    corecore