113,028 research outputs found

    CCSW '22: The 2022 cloud computing security workshop

    Get PDF
    Clouds and massive-scale computing infrastructures are starting to dominate computing and will likely continue to do so for the foreseeable future. Major cloud operators are now comprising millions of cores hosting substantial fractions of corporate and government IT infrastructure. CCSW is the world's premier forum bringing together researchers and practitioners in all security aspects of cloud-centric and outsourced computing, including: ·Side channel attacks ·Cryptographic protocols for cloud security ·Secure cloud resource virtualization mechanisms ·Secure data management outsourcing (e.g., database as a service) ·Privacy and integrity mechanisms for outsourcing ·Foundations of cloud-centric threat models ·Secure computation outsourcing ·Remote attestation mechanisms in clouds ·Sandboxing and VM-based enforcements ·Trust and policy management in clouds ·Secure identity management mechanisms ·Cloud-aware web service security paradigms and mechanisms ·Cloud-centric regulatory compliance issues and mechanisms ·Business and security risk models and clouds ·Cost and usability models and their interaction with security in clouds ·Scalability of security in global-size clouds ·Binary analysis of software for remote attestation and cloud protection ·Network security (DOS, IDS etc.) mechanisms for cloud contexts ·Security for emerging cloud programming models ·Energy/cost/efficiency of security in clouds ·mOpen hardware for cloud ·Machine learning for cloud protection CCSW especially encourages novel paradigms and controversial ideas that are not on the above list. The workshop has historically acted as a fertile ground for creative debate and interaction in security-sensitive areas of computing impacted by clouds. This year marked the 13th anniversary of CCSW. In the past decade, CCSW has had a significant impact in our research community

    Technical considerations towards mobile user QoE enhancement via Cloud interaction

    Get PDF
    This paper discusses technical considerations of a Cloud infrastructure which interacts with mobile devices in order to migrate part of the computational overhead from the mobile device to the Cloud. The aim of the interaction between the mobile device and the Cloud is the enhancement of parameters that affect the Quality of Experience (QoE) of the mobile end user through the offloading of computational aspects of demanding applications. This paper shows that mobile user’s QoE can be potentially enhanced by offloading computational tasks to the Cloud which incorporates a predictive context-aware mechanism to schedule delivery of content to the mobile end-user using a low-cost interaction model between the Cloud and the mobile user. With respect to the proposed enhancements, both the technical considerations of the cloud infrastructure are examined, as well as the interaction between the mobile device and the Cloud

    RCAgent: Cloud Root Cause Analysis by Autonomous Agents with Tool-Augmented Large Language Models

    Full text link
    Large language model (LLM) applications in cloud root cause analysis (RCA) have been actively explored recently. However, current methods are still reliant on manual workflow settings and do not unleash LLMs' decision-making and environment interaction capabilities. We present RCAgent, a tool-augmented LLM autonomous agent framework for practical and privacy-aware industrial RCA usage. Running on an internally deployed model rather than GPT families, RCAgent is capable of free-form data collection and comprehensive analysis with tools. Our framework combines a variety of enhancements, including a unique Self-Consistency for action trajectories, and a suite of methods for context management, stabilization, and importing domain knowledge. Our experiments show RCAgent's evident and consistent superiority over ReAct across all aspects of RCA -- predicting root causes, solutions, evidence, and responsibilities -- and tasks covered or uncovered by current rules, as validated by both automated metrics and human evaluations. Furthermore, RCAgent has already been integrated into the diagnosis and issue discovery workflow of the Real-time Compute Platform for Apache Flink of Alibaba Cloud

    Every Cloud Has a Push Data Lining: Incorporating Cloud Services in a Context-Aware Application

    Get PDF
    We investigated context-awareness by utilising multiple sources of context in a mobile device setting. In our experiment we developed a system consisting of a mobile client, running on the Android platform, integrated with a cloud-based service. These components were integrated using pushmessaging technology.One of the key featureswas the automatic adaptation of smartphones in accordance with implicit user needs. The novelty of our approach consists in the use of multiple sources of context input to the system, which included the use of calendar data and web based user configuration tool, as well as that of an external, cloud-based, configuration file storing user interface preferences which, pushed at log-on time irrespective of access device, frees the user from having to manually configure its interface.The systemwas evaluated via two rounds of user evaluations (n = 50 users), the feedback of which was generally positive and demonstrated the viability of using cloud-based services to provide an enhanced context-aware user experience
    corecore