2 research outputs found

    Virtuality Supports Reality for e-Health Applications

    Get PDF
    Strictly speaking the word “virtuality” or the expression “virtual reality” refers to an application for things simulated or created by the computer, which not really exist. More and more often such things are becoming equally referred with the adjective “virtual” or “digital” or mentioned with the prefixes “e-” or “cyber-”. So we know, for instance, of virtual or digital or e- or cyber- community, cash, business, greetings, books .. till even pets. The virtuality offers interesting advantages with respect to the “simple” reality, since it can reproduce, augment and even overcome the reality. The reproduction is not intended as it has been so far that a camera films a scenario from a fixed point of view and a player shows it, but today it is possible to reproduce the scene dynamically moving the point of view in practically any directions, and “real” becomes “realistic”. The virtuality can augment the reality in the sense that graphics are pulled out from a television screen (or computer/laptop/palm display) and integrated with the real world environments. In this way useful, and often in somehow essentials, information are added for the user. As an example new apps are now available even for iphone users who can obtain graphical information overlapped on camera played real scene surroundings, so directly reading the height of mountains, names of streets, lined up of satellites .., directly over the real mountains, the real streets, the real sky. But the virtuality can even overcome reality, since it can produce and make visible the hidden or inaccessible or old reality and even provide an alternative not real world. So we can virtually see deeply into the matter till atomic dimensions, realize a virtual tour in a past century or give visibility to hypothetical lands otherwise difficult or impossible to simple describe. These are the fundamental reasons for a naturally growing interest in “producing” virtuality. So here we will discuss about some of the different available methods to “produce” virtuality, in particular pointing out some steps necessary for “crossing” reality “towards” virtuality. But between these two parallel worlds, as the “real” and the “virtual” ones are, interactions can exist and this can lead to some further advantages. We will treat about the “production” and the “interaction” with the aim to focus the attention on how the virtuality can be applied in biomedical fields, since it has been demonstrated that virtual reality can furnish important and relevant benefits in e-health applications. As an example virtual tomography joins together 3D imaging anatomical features from several CT (Computerized axial Tomography) or MRI (Magnetic Resonance Imaging) images overlapped with a computer-generated kinesthetic interface so to obtain a useful tool in diagnosis and healing. With the new endovascular simulation possibilities, a head mounted display superimposes 3D images on the patient’s skin so to furnish a direction for implantable devices inside blood vessels. Among all, we chose to investigate the fields where we believe the virtual applications can furnish the meaningful advantages, i.e. in surgery simulation, in cognitive and neurological rehabilitation, in postural and motor training, in brain computer interface. We will furnish to the reader a necessary partial but at the same time fundamental view on what the virtual reality can do to improve possible medical treatment and so, at the end, resulting a better quality of our life

    Interacting with the environment through non-invasive brain-computer interfaces

    No full text
    The brain computer interface (BCI) technology allows a direct connection between brain and computer without any muscular activity required, and thus it offers a unique opportunity to enhance and/or to restore communication and actions into external word in people with severe motor disability. Here, we present the framework of the current research progresses regarding non-invasive EEG-based BCI applications specifically devoted to interact with the environment. Despite of the technological advancement, the operability of a BCI device in an out-laboratory setting (i.e. real-life condition) still remains far from being settled. The BCI control is indeed, characterized by unusual properties, when compared to more traditional inputs (long delays, noise with varying structure, long-term drifts, event-related noise, and stress effects). Current approaches to this are constituted by post hoc processing the BCI signal in order to better conform to traditional control. A long-term approach is to devise novel interaction modalities. In this regard, BCI can offer an unusual and compelling testing ground for new interaction ideas in the Human Computer Interaction field. © 2009 Springer Berlin Heidelberg
    corecore