14 research outputs found

    Temporal Justification Logic

    Get PDF
    Justification logics are modal-like logics with the additional capability of recording the reason, or justification, for modalities in syntactic structures, called justification terms. Justification logics can be seen as explicit counterparts to modal logics. The behavior and interaction of agents in distributed system is often modeled using logics of knowledge and time. In this paper, we sketch some preliminary ideas on how the modal knowledge part of such logics of knowledge and time could be replaced with an appropriate justification logic

    Complexity Jumps In Multiagent Justification Logic Under Interacting Justifications

    Full text link
    The Logic of Proofs, LP, and its successor, Justification Logic, is a refinement of the modal logic approach to epistemology in which proofs/justifications are taken into account. In 2000 Kuznets showed that satisfiability for LP is in the second level of the polynomial hierarchy, a result which has been successfully repeated for all other one-agent justification logics whose complexity is known. We introduce a family of multi-agent justification logics with interactions between the agents' justifications, by extending and generalizing the two-agent versions of the Logic of Proofs introduced by Yavorskaya in 2008. Known concepts and tools from the single-agent justification setting are adjusted for this multiple agent case. We present tableau rules and some preliminary complexity results. In several cases the satisfiability problem for these logics remains in the second level of the polynomial hierarchy, while for others it is PSPACE or EXP-hard. Furthermore, this problem becomes PSPACE-hard even for certain two-agent logics, while there are EXP-hard logics of three agents

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    NEXP-completeness and Universal Hardness Results for Justification Logic

    Full text link
    We provide a lower complexity bound for the satisfiability problem of a multi-agent justification logic, establishing that the general NEXP upper bound from our previous work is tight. We then use a simple modification of the corresponding reduction to prove that satisfiability for all multi-agent justification logics from there is hard for the Sigma 2 p class of the second level of the polynomial hierarchy - given certain reasonable conditions. Our methods improve on these required conditions for the same lower bound for the single-agent justification logics, proven by Buss and Kuznets in 2009, thus answering one of their open questions.Comment: Shorter version has been accepted for publication by CSR 201

    TR-2011008: The Ontology of Justifications in the Logical Setting

    Full text link

    TR-2012010: Explicit Generic Common Knowledge

    Full text link

    TR-2014003: On the Complexity of Two-Agent Justification Logic

    Full text link
    We investigate the complexity of derivability for two-agent Justification Logic. For this purpose we revisit Yavorskaya’s two-agent LP with interactions (2008), we simplify the syntax and provide natural extensions. We consider two-agent versions of other justification logics as well as ways to combine two justification logics. For most of these cases we prove that the upper complexity bound established for the single-agent cases are maintained: these logics ’ derivability problem is in the second step of the polynomial hierarchy. For certain logics, though, we discover a complex-ity jump to PSPACE-completeness, which is a new phenomenon for Justification Logic
    corecore