1,637 research outputs found

    Variational Inference-based Joint Interference Mitigation and OFDM Equalization Under High Mobility

    Get PDF
    In OFDM-based spectrum sharing networks, due to inefficient coordination or imperfect spectrum sensing, the signals from femtocells or secondary users appear as interference in a subset of subcarriers of the primary systems. Together with the inter-carrier interference (ICI) introduced by high mobility, equalizing one subcarrier now depends not only on whether interference exists, but also the neighboring subcarrier data. In this letter, we propose a novel approach to iteratively learn the statistics of noise plus interference across different subcarriers, and refine the soft data estimates of each subcarrier based on the variational inference. Simulation results show that the pro- posed method avoids the error floor effect, which is exhibited by existing algorithms without considering interference mitigation, and performs close to the ideal case with perfect ICI cancelation and knowledge of noise plus interference powers for optimal maximum a posteriori probability (MAP) equalizer.published_or_final_versio

    Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detection, and Hybrid Cramer-Rao Lower Bound

    Full text link
    Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of orthogonal frequency division multiplexing (OFDM) systems, since they can result in inter carrier interference and rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based algorithm for joint estimation of channel, PHN, and CFO in OFDM systems. We present the signal model for the estimation problem and derive the hybrid Cramer-Rao lower bound (HCRB) for the joint estimation problem. Next, we propose an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking. Numerical results show that, compared to existing algorithms, the performance of the proposed ECM-based estimator is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high signal-to-noise ratio (SNR). In addition, the combined estimation algorithm and iterative receiver are more computationally efficient than existing algorithms and result in improved average uncoded and coded bit error rate (BER) performance
    • …
    corecore