5,000 research outputs found

    The Logic of the Method of Agent-Based Simulation in the Social Sciences: Empirical and Intentional Adequacy of Computer Programs

    Get PDF
    The classical theory of computation does not represent an adequate model of reality for simulation in the social sciences. The aim of this paper is to construct a methodological perspective that is able to conciliate the formal and empirical logic of program verification in computer science, with the interpretative and multiparadigmatic logic of the social sciences. We attempt to evaluate whether social simulation implies an additional perspective about the way one can understand the concepts of program and computation. We demonstrate that the logic of social simulation implies at least two distinct types of program verifications that reflect an epistemological distinction in the kind of knowledge one can have about programs. Computer programs seem to possess a causal capability (Fetzer, 1999) and an intentional capability that scientific theories seem not to possess. This distinction is associated with two types of program verification, which we call empirical and intentional verification. We demonstrate, by this means, that computational phenomena are also intentional phenomena, and that such is particularly manifest in agent-based social simulation. Ascertaining the credibility of results in social simulation requires a focus on the identification of a new category of knowledge we can have about computer programs. This knowledge should be considered an outcome of an experimental exercise, albeit not empirical, acquired within a context of limited consensus. The perspective of intentional computation seems to be the only one possible to reflect the multiparadigmatic character of social science in terms of agent-based computational social science. We contribute, additionally, to the clarification of several questions that are found in the methodological perspectives of the discipline, such as the computational nature, the logic of program scalability, and the multiparadigmatic character of agent-based simulation in the social sciences.Computer and Social Sciences, Agent-Based Simulation, Intentional Computation, Program Verification, Intentional Verification, Scientific Knowledge

    The Logic of the Method of Agent-Based Simulation in the Social Sciences: Empirical and Intentional Adequacy of Computer Programs

    Get PDF
    The classical theory of computation does not represent an adequate model of reality for simulation in the social sciences. The aim of this paper is to construct a methodological perspective that is able to conciliate the formal and empirical logic of program verification in computer science, with the interpretative and multiparadigmatic logic of the social sciences. We attempt to evaluate whether social simulation implies an additional perspective about the way one can understand the concepts of program and computation. We demonstrate that the logic of social simulation implies at least two distinct types of program verifications that reflect an epistemological distinction in the kind of knowledge one can have about programs. Computer programs seem to possess a causal capability (Fetzer, 1999) and an intentional capability that scientific theories seem not to possess. This distinction is associated with two types of program verification, which we call empirical and intentional verification. We demonstrate, by this means, that computational phenomena are also intentional phenomena, and that such is particularly manifest in agent-based social simulation. Ascertaining the credibility of results in social simulation requires a focus on the identification of a new category of knowledge we can have about computer programs. This knowledge should be considered an outcome of an experimental exercise, albeit not empirical, acquired within a context of limited consensus. The perspective of intentional computation seems to be the only one possible to reflect the multiparadigmatic character of social science in terms of agent-based computational social science. We contribute, additionally, to the clarification of several questions that are found in the methodological perspectives of the discipline, such as the computational nature, the logic of program scalability, and the multiparadigmatic character of agent-based simulation in the social sciences

    The logic of the method of agent-based simulation in the social sciences: Empirical and intentional adequacy of computer programs

    Get PDF
    WOS:000235217900009 (NÂş de Acesso Web of Science)The classical theory of computation does not represent an adequate model of reality for simulation in the social sciences. The aim of this paper is to construct a methodological perspective that is able to conciliate the formal and empirical logic of program verification in computer science, with the interpretative and multiparadigmatic logic of the social sciences. We attempt to evaluate whether social simulation implies an additional perspective about the way one can understand the concepts of program and computation. We demonstrate that the logic of social simulation implies at least two distinct types of program verifications that reflect an epistemological distinction in the kind of knowledge one can have about programs. Computer programs seem to possess a causal capability (Fetzer, 1999) and an intentional capability that scientific theories seem not to possess. This distinction is associated with two types of program verification, which we call empirical and intentional verification. We demonstrate, by this means, that computational phenomena are also intentional phenomena, and that such is particularly manifest in agent-based social simulation. Ascertaining the credibility of results in social simulation requires a focus on the identification of a new category of knowledge we can have about computer programs. This knowledge should be considered an outcome of an experimental exercise, albeit not empirical, acquired within a context of limited consensus. The perspective of intentional computation seems to be the only one possible to reflect the multiparadigmatic character of social science in terms of agent-based computational social science. We contribute, additionally, to the clarification of several questions that are found in the methodological perspectives of the discipline, such as the computational nature, the logic of program scalability, and the multiparadigmatic character of agent-based simulation in the social sciences

    The Role of Imagination in Social Scientific Discovery: Why Machine Discoverers Will Need Imagination Algorithms

    Get PDF
    When philosophers discuss the possibility of machines making scientific discoveries, they typically focus on discoveries in physics, biology, chemistry and mathematics. Observing the rapid increase of computer-use in science, however, it becomes natural to ask whether there are any scientific domains out of reach for machine discovery. For example, could machines also make discoveries in qualitative social science? Is there something about humans that makes us uniquely suited to studying humans? Is there something about machines that would bar them from such activity? A close look at the methodology of interpretive social science reveals several abilities necessary to make a social scientific discovery, and one capacity necessary to possess any of them is imagination. For machines to make discoveries in social science, therefore, they must possess imagination algorithms

    User adaptation in user-system-interaction

    Get PDF

    Can Science Explain Consciousness?

    Get PDF
    For diverse reasons, the problem of phenomenal consciousness is persistently challenging. Mental terms are characteristically ambiguous, researchers have philosophical biases, secondary qualities are excluded from objective description, and philosophers love to argue. Adhering to a regime of efficient causes and third-person descriptions, science as it has been defined has no place for subjectivity or teleology. A solution to the “hard problem” of consciousness will require a radical approach: to take the point of view of the cognitive system itself. To facilitate this approach, a concept of agency is introduced along with a different understanding of intentionality. Following this approach reveals that the autopoietic cognitive system constructs phenomenality through acts of fiat, which underlie perceptual completion effects and “filling in”—and, by implication, phenomenology in general. It creates phenomenality much as we create meaning in language, through the use of symbols that it assigns meaning in the context of an embodied evolutionary history that is the source of valuation upon which meaning depends. Phenomenality is a virtual representation to itself by an executive agent (the conscious self) tasked with monitoring the state of the organism and its environment, planning future action, and coordinating various sub- agencies. Consciousness is not epiphenomenal, but serves a function for higher organisms that is distinct from that of unconscious processing. While a strictly scientific solution to the hard problem is not possible for a science that excludes the subjectivity it seeks to explain, there is hope to at least psychologically bridge the explanatory gulf between mind and matter, and perhaps hope for a broader definition of science

    Evidence and Formal Models in the Linguistic Sciences

    Get PDF
    This dissertation contains a collection of essays centered on the relationship between theoretical model-building and empirical evidence-gathering in linguistics and related language sciences. The first chapter sets the stage by demonstrating that the subject matter of linguistics is manifold, and contending that discussion of relationships between linguistic models, evidence, and language itself depends on the subject matter at hand. The second chapter defends a restrictive account of scientific evidence. I make use of this account in the third chapter, in which I argue that if my account of scientific evidence is correct, then linguistic intuitions do not generally qualify as scientific evidence. Drawing on both extant and original empirical work on linguistic intuitions, I explore the consequences of this conclusion for scientific practice. In the fourth and fifth chapters I examine two distinct ways in which theoretical models relate to the evidence. Chapter four looks at the way in which empirical evidence can support computer simulations in evolutionary linguistics by informing and constraining them. Chapter five, on the other hand, probes the limits of how models are constrained by the data, taking as a case study empirically-suspect but theoretically-useful intentionalist models of meaning

    Talking Nets: A Multi-Agent Connectionist Approach to Communication and Trust between Individuals

    Get PDF
    A multi-agent connectionist model is proposed that consists of a collection of individual recurrent networks that communicate with each other, and as such is a network of networks. The individual recurrent networks simulate the process of information uptake, integration and memorization within individual agents, while the communication of beliefs and opinions between agents is propagated along connections between the individual networks. A crucial aspect in belief updating based on information from other agents is the trust in the information provided. In the model, trust is determined by the consistency with the receiving agents’ existing beliefs, and results in changes of the connections between individual networks, called trust weights. Thus activation spreading and weight change between individual networks is analogous to standard connectionist processes, although trust weights take a specific function. Specifically, they lead to a selective propagation and thus filtering out of less reliable information, and they implement Grice’s (1975) maxims of quality and quantity in communication. The unique contribution of communicative mechanisms beyond intra-personal processing of individual networks was explored in simulations of key phenomena involving persuasive communication and polarization, lexical acquisition, spreading of stereotypes and rumors, and a lack of sharing unique information in group decisions

    Apperceptive patterning: Artefaction, extensional beliefs and cognitive scaffolding

    Get PDF
    In “Psychopower and Ordinary Madness” my ambition, as it relates to Bernard Stiegler’s recent literature, was twofold: 1) critiquing Stiegler’s work on exosomatization and artefactual posthumanism—or, more specifically, nonhumanism—to problematize approaches to media archaeology that rely upon technical exteriorization; 2) challenging how Stiegler engages with Giuseppe Longo and Francis Bailly’s conception of negative entropy. These efforts were directed by a prevalent techno-cultural qualifier: the rise of Synthetic Intelligence (including neural nets, deep learning, predictive processing and Bayesian models of cognition). This paper continues this project but first directs a critical analytic lens at the Derridean practice of the ontologization of grammatization from which Stiegler emerges while also distinguishing how metalanguages operate in relation to object-oriented environmental interaction by way of inferentialism. Stalking continental (Kapp, Simondon, Leroi-Gourhan, etc.) and analytic traditions (e.g., Carnap, Chalmers, Clark, Sutton, Novaes, etc.), we move from artefacts to AI and Predictive Processing so as to link theories related to technicity with philosophy of mind. Simultaneously drawing forth Robert Brandom’s conceptualization of the roles that commitments play in retrospectively reconstructing the social experiences that lead to our endorsement(s) of norms, we compliment this account with Reza Negarestani’s deprivatized account of intelligence while analyzing the equipollent role between language and media (both digital and analog)

    Annotated Bibliography: Anticipation

    Get PDF
    • …
    corecore