2,411 research outputs found

    Automated Speaker Independent Visual Speech Recognition: A Comprehensive Survey

    Full text link
    Speaker-independent VSR is a complex task that involves identifying spoken words or phrases from video recordings of a speaker's facial movements. Over the years, there has been a considerable amount of research in the field of VSR involving different algorithms and datasets to evaluate system performance. These efforts have resulted in significant progress in developing effective VSR models, creating new opportunities for further research in this area. This survey provides a detailed examination of the progression of VSR over the past three decades, with a particular emphasis on the transition from speaker-dependent to speaker-independent systems. We also provide a comprehensive overview of the various datasets used in VSR research and the preprocessing techniques employed to achieve speaker independence. The survey covers the works published from 1990 to 2023, thoroughly analyzing each work and comparing them on various parameters. This survey provides an in-depth analysis of speaker-independent VSR systems evolution from 1990 to 2023. It outlines the development of VSR systems over time and highlights the need to develop end-to-end pipelines for speaker-independent VSR. The pictorial representation offers a clear and concise overview of the techniques used in speaker-independent VSR, thereby aiding in the comprehension and analysis of the various methodologies. The survey also highlights the strengths and limitations of each technique and provides insights into developing novel approaches for analyzing visual speech cues. Overall, This comprehensive review provides insights into the current state-of-the-art speaker-independent VSR and highlights potential areas for future research

    Fusion for Audio-Visual Laughter Detection

    Get PDF
    Laughter is a highly variable signal, and can express a spectrum of emotions. This makes the automatic detection of laughter a challenging but interesting task. We perform automatic laughter detection using audio-visual data from the AMI Meeting Corpus. Audio-visual laughter detection is performed by combining (fusing) the results of a separate audio and video classifier on the decision level. The video-classifier uses features based on the principal components of 20 tracked facial points, for audio we use the commonly used PLP and RASTA-PLP features. Our results indicate that RASTA-PLP features outperform PLP features for laughter detection in audio. We compared hidden Markov models (HMMs), Gaussian mixture models (GMMs) and support vector machines (SVM) based classifiers, and found that RASTA-PLP combined with a GMM resulted in the best performance for the audio modality. The video features classified using a SVM resulted in the best single-modality performance. Fusion on the decision-level resulted in laughter detection with a significantly better performance than single-modality classification

    Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data

    Full text link
    Many systems are partially stochastic in nature. We have derived data driven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems and Securit

    The application of manifold based visual speech units for visual speech recognition

    Get PDF
    This dissertation presents a new learning-based representation that is referred to as a Visual Speech Unit for visual speech recognition (VSR). The automated recognition of human speech using only features from the visual domain has become a significant research topic that plays an essential role in the development of many multimedia systems such as audio visual speech recognition(AVSR), mobile phone applications, human-computer interaction (HCI) and sign language recognition. The inclusion of the lip visual information is opportune since it can improve the overall accuracy of audio or hand recognition algorithms especially when such systems are operated in environments characterized by a high level of acoustic noise. The main contribution of the work presented in this thesis is located in the development of a new learning-based representation that is referred to as Visual Speech Unit for Visual Speech Recognition (VSR). The main components of the developed Visual Speech Recognition system are applied to: (a) segment the mouth region of interest, (b) extract the visual features from the real time input video image and (c) to identify the visual speech units. The major difficulty associated with the VSR systems resides in the identification of the smallest elements contained in the image sequences that represent the lip movements in the visual domain. The Visual Speech Unit concept as proposed represents an extension of the standard viseme model that is currently applied for VSR. The VSU model augments the standard viseme approach by including in this new representation not only the data associated with the articulation of the visemes but also the transitory information between consecutive visemes. A large section of this thesis has been dedicated to analysis the performance of the new visual speech unit model when compared with that attained for standard (MPEG- 4) viseme models. Two experimental results indicate that: 1. The developed VSR system achieved 80-90% correct recognition when the system has been applied to the identification of 60 classes of VSUs, while the recognition rate for the standard set of MPEG-4 visemes was only 62-72%. 2. 15 words are identified when VSU and viseme are employed as the visual speech element. The accuracy rate for word recognition based on VSUs is 7%-12% higher than the accuracy rate based on visemes

    Visual Speech Recognition

    Get PDF
    Lip reading is used to understand or interpret speech without hearing it, a technique especially mastered by people with hearing difficulties. The ability to lip read enables a person with a hearing impairment to communicate with others and to engage in social activities, which otherwise would be difficult. Recent advances in the fields of computer vision, pattern recognition, and signal processing has led to a growing interest in automating this challenging task of lip reading. Indeed, automating the human ability to lip read, a process referred to as visual speech recognition (VSR) (or sometimes speech reading), could open the door for other novel related applications. VSR has received a great deal of attention in the last decade for its potential use in applications such as human-computer interaction (HCI), audio-visual speech recognition (AVSR), speaker recognition, talking heads, sign language recognition and video surveillance. Its main aim is to recognise spoken word(s) by using only the visual signal that is produced during speech. Hence, VSR deals with the visual domain of speech and involves image processing, artificial intelligence, object detection, pattern recognition, statistical modelling, etc.Comment: Speech and Language Technologies (Book), Prof. Ivo Ipsic (Ed.), ISBN: 978-953-307-322-4, InTech (2011
    corecore