5 research outputs found

    Data Mining Industrial Applications

    Get PDF

    A survey of AI in operations management from 2005 to 2009

    Get PDF
    Purpose: the use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence this paper presents a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the ten-year period 1995-2004. Like the previous survey, it uses Elsevier’s Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case-based reasoning (CBR), fuzzy logic (FL), knowledge-Based systems (KBS), data mining, and hybrid AI in the four application areas are identified. Findings: the survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the 10 year period 1995 to 2004 (Kobbacy et al. 2007). Like the previous survey, it uses the Elsevier’s ScienceDirect database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus the application categories adopted are: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Research on utilising neural networks, case based reasoning, fuzzy logic, knowledge based systems, data mining, and hybrid AI in the four application areas are identified. Findings: The survey categorises over 1400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: (a) The trends for Design and Scheduling show a dramatic increase in the use of GAs since 2003-04 that reflect recognition of their success in these areas, (b) A significant decline in research on use of KBS, reflecting their transition into practice, (c) an increasing trend in the use of fuzzy logic in Quality, Maintenance and Fault Diagnosis, (d) surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Originality/value: This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research

    An agent based architecture to support monitoring in plug and produce manufacturing systems using knowledge extraction

    Get PDF
    In recent years a set of production paradigms were proposed in order to capacitate manufacturers to meet the new market requirements, such as the shift in demand for highly customized products resulting in a shorter product life cycle, rather than the traditional mass production standardized consumables. These new paradigms advocate solutions capable of facing these requirements, empowering manufacturing systems with a high capacity to adapt along with elevated flexibility and robustness in order to deal with disturbances, like unexpected orders or malfunctions. Evolvable Production Systems propose a solution based on the usage of modularity and self-organization with a fine granularity level, supporting pluggability and in this way allowing companies to add and/or remove components during execution without any extra re-programming effort. However, current monitoring software was not designed to fully support these characteristics, being commonly based on centralized SCADA systems, incapable of re-adapting during execution to the unexpected plugging/unplugging of devices nor changes in the entire system’s topology. Considering these aspects, the work developed for this thesis encompasses a fully distributed agent-based architecture, capable of performing knowledge extraction at different levels of abstraction without sacrificing the capacity to add and/or remove monitoring entities, responsible for data extraction and analysis, during runtime

    Nouvelle approche de maßtrise de processus intégrant les cartes de contrÎle multidimensionnelles et les graphes en coordonnées parallÚles

    Get PDF
    RÉSUMÉ : Dans une entreprise nord amĂ©ricaine type, les coĂ»ts de non-qualitĂ© sont en moyenne de 20% de son chiffre d’affaires. Ces coĂ»ts sont certainement Ă©levĂ©s et ils ne peuvent pas ĂȘtre, totalement, Ă©liminĂ©s. Toutefois, les entreprises peuvent les rĂ©duire grĂące Ă  une meilleure maitrise des processus manufacturiers et Ă  un meilleur contrĂŽle qualitĂ©. Ces taches sont primordiales pour garantir l’efficacitĂ© des processus de fabrication et pour amĂ©liorer la qualitĂ© des produits. En effet, la qualitĂ© des produits est reliĂ©e aux paramĂštres machines. Cependant, actuellement dans l’industrie, les paramĂštres machines et les variables des produits sont contrĂŽlĂ©s sĂ©parĂ©ment omettant ainsi les relations qui peuvent exister entre eux. La vĂ©rification individuelle sĂ©parĂ©e peut ĂȘtre longue et complexe. Elle peut mener Ă  la non-dĂ©tection de certains dĂ©fauts ou encore Ă  la gĂ©nĂ©ration de certaines fausses alarmes. En effet, la prise en compte des relations entre les paramĂštres des Ă©quipements et/ou les variables des produits est indispensable. Pour tenir compte des dĂ©pendances entre les variables et paramĂštres, plusieurs auteurs ont proposĂ© des cartes de contrĂŽle multidimensionnelles, telles que les versions multidimensionnelles des cartes connues telles que MEWMA, CUSUM et Hotelling. Ces cartes ont un problĂšme majeur. Elles supposent que les donnĂ©es proviennent d’une distribution normale, ce qui n’est pas toujours le cas. D’autres versions des cartes de contrĂŽle ne supposent pas la normalitĂ© des donnĂ©es, mais supposent que leur distribution est connue. Or, peu d’industriels connaissent ce genre d’informations. D’autres techniques de contrĂŽle de processus ou de dĂ©tection de dĂ©fauts ont Ă©tĂ© suggĂ©rĂ©es. Ces techniques sont soient des techniques basĂ©es sur des algorithmes d’apprentissage statistique ou de data mining soient des cartes de contrĂŽle qui ne dĂ©pendent pas de la distribution des donnĂ©es. Ces outils ont montrĂ© des rĂ©sultats assez intĂ©ressant en termes de dĂ©tection de dĂ©fauts et de gĂ©nĂ©ration de fausses alarmes. Par contre, elles fonctionnent comme une sorte de boite noire. Si un dĂ©faut est dĂ©tectĂ©, le diagnostic doit passer par des cartes de contrĂŽle monodimensionnelles et doit idĂ©alement se faire par un expert. Ces outils proposent rarement un support visuel de diagnostic. Ceci peut ĂȘtre du au fait que les graphes multidimensionnelles sont gĂ©nĂ©ralement mĂ©connus ou, parfois, difficile Ă  interprĂ©ter. Ainsi, ils sont rarement exploitĂ©s dans le dĂ©veloppement des outils de contrĂŽle. Dans ce document, nous proposons d’intĂ©grer un type de graphes multidimensionnelles, les coordonnĂ©es parallĂšles avec les concepts des outils de contrĂŽle pour soutenir le contrĂŽle qualitĂ©. Nous proposons un outil visuel de contrĂŽle de processus, qui est ne dĂ©pend pas de la distribution des donnĂ©es et qui tient en compte les relations entre les variables considĂ©rĂ©es. Cet outil permet de faire le diagnostic d’un dĂ©faut dĂ©tectĂ©. Cet outil permet de gĂ©nĂ©rer deux types de cartes de contrĂŽle multidimensionnelles selon la disponibilitĂ© des donnĂ©es historiques. Les deux cartes sont visualisĂ©es en coordonnĂ©es parallĂšles. La premiĂšre version est proposĂ©e pour le cas ou un nombre assez important d’observations historiques est disponible. Elle est basĂ©e sur la visualisation des limites multidimensionnelles de la zone de fonctionnement appelĂ©e best operating zone. Cette zone est encore rĂ©partie en plusieurs zones de fonctionnement. La deuxiĂšme version est adaptĂ©e au cas ou le nombre de donnĂ©es historiques est limitĂ©. Elle est basĂ©e sur la caractĂ©risation de la zone de fonctionnement Ă  l’aide des graphes de densitĂ©. Avant de caractĂ©riser les zones de fonctionnement, pour garantir une reprĂ©sentation optimisĂ©e des variables en coordonnĂ©es parallĂšles, un arrangement des variables dans l’objectif de souligner les relations entre les variables ou d’amĂ©liorer la dĂ©tection des segments de fonctionnement est rĂ©alisĂ©. Un cadre gĂ©nĂ©ral d’arrangement de variables est proposĂ©. Ce cadre dĂ©pend de l’objectif d’arrangement. Pour conclure, la conception des cartes de contrĂŽle passe par 3 Ă©tapes principales : — L’arrangement des variables ; — La caractĂ©risation de la zone opĂ©rationnelle (zone de fonctionnement) ; — la reprĂ©sentation et la classification des nouvelles observations. Chaque Ă©tape du dĂ©veloppement de l’outil est Ă©valuĂ© Ă  l’aide d’une ou plusieurs bases simulĂ©es ou rĂ©elles pour montrer les avantages et les limitations des algorithmes et des outils suggĂ©rĂ©s. L’algorithme d’arrangement des variables montre sa capacitĂ© Ă  dĂ©tecter les dĂ©pendances entre les attributs et aussi Ă  sĂ©parer les donnĂ©es. Les cartes de contrĂŽle basĂ©es sur la best operating zone (premiĂšre version) offre un taux de dĂ©tection de dĂ©fauts assez Ă©lĂšve (environ 76% pour la base de donnĂ©es de spam) et un taux de fausses alarmes acceptable comparĂ© aux cartes d’Hotelling. De plus, ces cartes montrent une performance comparables voire meilleure que celles des cartes d’Hotelling selon le critĂšre de la longueur opĂ©rationnelle moyenne (ARL). Les cartes de contrĂŽle densitĂ©, dĂ©veloppĂ©es avec un nombre de donnĂ©es limitĂ©es, montrent un taux de classification assez intĂ©ressants comparĂ©es aux rĂ©seaux de neurones et aux cartes d’Hotelling. Elles donnent un taux de classification correcte autour de 75% en se basant sur des cartes dĂ©veloppĂ©es avec 100 observations historiques. Le mĂȘme taux est trouvĂ© avec les rĂ©seaux de neurones mais avec 300 observations historiques (d’apprentissage). Le taux de classification des cartes d’Hotelling est, significativement, plus faible que celui des cartes densitĂ© et des rĂ©seaux de neurones. Les tests montrent que les solutions proposĂ©es s’alignent avec les objectifs pour lesquelles elles ont Ă©tĂ© proposĂ©es, notamment pour l’aspect visualisation et diagnostic des cartes de contrĂŽle.----------ABSTRACT : Quality control and process monitoring are very important task for manufacturing processes. They guaranty the efficiency of the manufacturing process and the quality of the final products. Final product quality is directly related to equipment parameters.Despite the dependency between the process parameters and the product variables, they are separately monitored in most of the current industries. Generally, each parameter or variable is monitored in individual process control chart which might make the control a longer and more complex. This might, also, be very misleading. It might lead to the non-detection of some faults or to the generation of false alarms. Actually, taking into account the dependencies between product variables and process parameters is necessary. In order to do so, many authors suggest multivariate versions of known process control charts such as MEWMA, CUSUM and Hotelling. These charts have a major problem, that is they are under a very restrictive assumption, as they consider that all the variables and parameters follow a normal distribution. Authors suppose that somehow the central limit theorem will solve the problem of data non-normality. This is true when the charts are proposed for monitoring statistics such as the mean or the standard deviation, but not accurate when it is about monitoring individual observations. Some authors suggest techniques that do not suppose the normality of the data but that suppose that it is known. Few industrials know this kind of information, i.e. statistical characteristics of data. As an improvement of the parametric charts, non-parametric process control tools were proposed. These tools are either techniques based on machines learning or data mining algorithms or distribution free control charts. They show interesting results in fault detection and false alarm generation. However, they work as a black box. It is difficult to understand or interpret the obtained results. If any fault is detected, the diagnosis needs to be proceeded by an expert usually supported by monodimensional charts. Actually, practitioners are still not familiar with multidimensional graphs. In this thesis, we introduce a visual distribution free multidimensional process control tool that takes into account the dependencies between the different variables and parameters. This tool integrates parallel coordinates with the concepts of process control tools. So, it enables fault detection and also diagnosis as it conceives two types of visual control charts, depending on the availability of the historical (training) data. Both charts are visualized in parallel coordinates. The first version is proposed for the case where the training dataset is large. It is based on the visualization of control limits, i.e. the limits of the best operating zone. This zone that contains all possible functional observations is, then, divided into small functional zones in a way that the probability of not detecting a fault is reduced. The second version of chart is proposed for the case where the number of historical data is limited. The characterization of the operating zone is based on density graphs. However, before characterizing the operating zone, a variable reordering is applied to ensure an optimized representation of the variables in the parallel coordinate graph. The objective of this step is to highlight relations among variables, highlight data structure and help cluster detection. A general variable reordering framework is presented. It depends on the objective of the reordering. To conclude, conceiving a control chart, as it is proposed in this thesis goes through 3 steps: — variable reordering; — characterizing the functional (operating) zone; — representing and classifying the new observations. Each step of the development of the tool is evaluated based on different databases to analyze the advantages and limitations of the proposed algorithms. The suggested variable reordering framework shows its capacity to adapt to the objective of reordering. Twos objective were studied, highlighting variable dependence and data separation. The results obtained for the first version of the control chart are comparable (or better) than Hotelling chart, 76% of correct classification compared to 69% for Hotelling charts (for SPAM data). This is confirmed when the average run lengths are compared (ARL). Moreover, the density charts give, also, interesting results compared to Hotelling charts and neural networks. It reaches 75% of correct classification rate with 100 historical observations, whereas, neural networks reach the same rate with 300 observations. Hotelling charts do not give interesting results when the number of historical observations is limited. Besides, their good performance, the proposed charts provide a visual support that enables the interpretation of the results and also, the diagnosis of the detected faults which is not offered by the other techniques
    corecore