3,063 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Bibliometric Analysis of Firefly Algorithm Applications in the Field of Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network is a network of wireless sensor nodes that are capable of sensing information from their surroundings and transmit the sensed information to data collection point known as a base station. Applications of wireless sensor networks are large in number and forest fire detection, landslide monitoring, etc. are few applications to note. The research challenges in wireless sensor networks is the transmission of data from the sensor node to the base station in an energy-efficient manner and network life prolongation. Cluster-based routing techniques are extensively adopted to address this research challenge. Researchers have used different metaheuristic and soft computing techniques for designing such energy-efficient routing techniques. In the literature, a lot of survey article on cluster-based routing methods are available, but there is no bibliometric analysis conducted so far. Hence in this research article, bibliometric study with the focus on the firefly algorithm and its applications in wireless sensor network is undertaken. The purpose of this article is to explore the nature of research conducted concerning to authors, the connection between keywords, the importance of journals and scope for further research in soft computing based clustered routing methods. A detailed bibliometric analysis is carried out by collecting the details of published articles from the Scopus database. In this article, the collected data is articulated in terms of yearly document statistics, key affiliations of authors, contributing geographical locations, subject area statistics, author-keyword mapping, and many more essential aspects of bibliometric analysis. The conducted study helped in understanding that there is a vast scope for the research community to perform research work concerning firefly algorithm applications in the field of wireless sensor networks

    Kinetic Gas Molecule Optimization based Cluster Head Selection Algorithm for minimizing the Energy Consumption in WSN

    Get PDF
    As the amount of low-cost and low-power sensor nodes increases, so does the size of a wireless sensor network (WSN). Using self-organization, the sensor nodes all connect to one another to form a wireless network. Sensor gadgets are thought to be extremely difficult to recharge in unfavourable conditions. Moreover, network longevity, coverage area, scheduling, and data aggregation are the major issues of WSNs. Furthermore, the ability to extend the life of the network, as well as the dependability and scalability of sensor nodes' data transmissions, demonstrate the success of data aggregation. As a result, clustering methods are thought to be ideal for making the most efficient use of resources while also requiring less energy. All sensor nodes in a cluster communicate with each other via a cluster head (CH) node. Any clustering algorithm's primary responsibility in these situations is to select the ideal CH for solving the variety of limitations, such as minimising energy consumption and delay. Kinetic Gas Molecule Optimization (KGMO) is used in this paper to create a new model for selecting CH to improve network lifetime and energy. Gas molecule agents move through a search space in pursuit of an optimal solution while considering characteristics like energy, distance, and delay as objective functions. On average, the KGMO algorithm results in a 20% increase in network life expectancy and a 19.84% increase in energy stability compared to the traditional technique Bacterial Foraging Optimization Algorithm (BFO)

    Energy Efficient Hybrid Routing Protocol Based on the Artificial Fish Swarm Algorithm and Ant Colony Optimisation for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are a particular type of distributed self-managed network with limited energy supply and communication ability. The most significant challenge of a routing protocol is the energy consumption and the extension of the network lifetime. Many energy-efficient routing algorithms were inspired by the development of Ant Colony Optimisation (ACO). However, due to the inborn defects, ACO-based routing algorithms have a slow convergence behaviour and are prone to premature, stagnation phenomenon, which hinders further route discovery, especially in a large-scale network. This paper proposes a hybrid routing algorithm by combining the Artificial Fish Swarm Algorithm (AFSA) and ACO to address these issues. We utilise AFSA to perform the initial route discovery in order to find feasible routes quickly. In the route discovery algorithm, we present a hybrid algorithm by combining the crowd factor in AFSA and the pseudo-random route select strategy in ACO. Furthermore, this paper presents an improved pheromone update method by considering energy levels and path length. Simulation results demonstrate that the proposed algorithm avoids the routing algorithm falling into local optimisation and stagnation, whilst speeding up the routing convergence, which is more prominent in a large-scale network. Furthermore, simulation evaluation reports that the proposed algorithm exhibits a significant improvement in terms of network lifetime

    Optimal leach protocol with improved bat algorithm in wireless sensor networks

    Full text link
    © 2019, Korean Society for Internet Information. All rights reserved. A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT’s Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs)

    Energy-efficient routing protocols in heterogeneous wireless sensor networks

    Get PDF
    Sensor networks feature low-cost sensor devices with wireless network capability, limited transmit power, resource constraints and limited battery energy. The usage of cheap and tiny wireless sensors will allow very large networks to be deployed at a feasible cost to provide a bridge between information systems and the physical world. Such large-scale deployments will require routing protocols that scale to large network sizes in an energy-efficient way. This thesis addresses the design of such network routing methods. A classification of existing routing protocols and the key factors in their design (i.e., hardware, topology, applications) provides the motivation for the new three-tier architecture for heterogeneous networks built upon a generic software framework (GSF). A range of new routing algorithms have hence been developed with the design goals of scalability and energy-efficient performance of network protocols. They are respectively TinyReg - a routing algorithm based on regular-graph theory, TSEP - topological stable election protocol, and GAAC - an evolutionary algorithm based on genetic algorithms and ant colony algorithms. The design principle of our routing algorithms is that shortening the distance between the cluster-heads and the sink in the network, will minimise energy consumption in order to extend the network lifetime, will achieve energy efficiency. Their performance has been evaluated by simulation in an extensive range of scenarios, and compared to existing algorithms. It is shown that the newly proposed algorithms allow long-term continuous data collection in large networks, offering greater network longevity than existing solutions. These results confirm the validity of the GSF as an architectural approach to the deployment of large wireless sensor networks

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
    corecore