385,234 research outputs found

    Expert system decision support for low-cost launch vehicle operations

    Get PDF
    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation

    SigmaCLIPSE = presentation management + NASA CLI PS + SQL

    Get PDF
    SigmaCLIPSE provides an expert systems and 'intelligent' data base development program for diverse systems integration environments that require support for automated reasoning and expert systems technology, presentation management, and access to 'intelligent' SQL data bases. The SigmaCLIPSE technology and and its integrated ability to access 4th generation application development and decision support tools through a portable SQL interface, comprises a sophisticated software development environment for solving knowledge engineering and expert systems development problems in information intensive commercial environments -- financial services, health care, and distributed process control -- where the expert system must be extendable -- a major architectural advantage of NASA CLIPS. SigmaCLIPSE is a research effort intended to test the viability of merging SQL data bases with expert systems technology

    Developments in impact damage modeling for laminated composite structures

    Get PDF
    Damage tolerance is the most critical technical issue for composite fuselage structures studied in the Advanced Technology Composite Aircraft Structures (ATCAS) program. The objective here is to understand both the impact damage resistance and residual strength of the laminated composite fuselage structure. An understanding of the different damage mechanisms which occur during an impact event will support the selection of materials and structural configurations used in different fuselage quadrants and guide the development of analysis tools for predicting the residual strength of impacted laminates. Prediction of the damage state along with the knowledge of post-impact response to applied loads will allow for engineered stacking sequencies and structural configurations; intelligent decisions on repair requirements will also result

    Photonic processing at NASA Ames Research Center

    Get PDF
    The Photonic Processing group is engaged in applied research on optical processors in support of the Ames vision to lead the development of autonomous intelligent systems. Optical processors, in conjunction with numeric and symbolic processors, are needed to provide the powerful processing capability that is required for many future agency missions. The research program emphasizes application of analog optical processing, where free-space propagation between components allows natural implementations of algorithms requiring a large degree of parallel computation. Special consideration is given in the Ames program to the integration of optical processors into larger, heterogeneous computational systems. Demonstration of the effective integration of optical processors within a broader knowledge-based system is essential to evaluate their potential for dependable operation in an autonomous environment such as space. The Ames Photonics program is currently addressing several areas of interest. One of the efforts is to develop an optical correlator system with two programmable spatial light modulators (SLMs) to perform distortion invariant pattern recognition. Another area of research is optical neural networks, also for use in distortion-invariant pattern recognition

    An integrated environment for problem solving and program development

    Get PDF
    A framework for an integrated problem solving and program development environment that addresses the needs of students learning programming is proposed. Several objectives have been accomplished: defining the tasks required for program development and a literature review to determine the actual difficulties involved in learning those tasks. A comprehensive Study of environments and tools developed to support the learning of problem solving and programming was then performed, covering programming environments, debugging aids, intelligent tutoring systems, and intelligent programming environments. This was followed by a careful analysis and critique of these systems, which uncovered the limitations that have prevented them from accomplishing their goals. Next, an extensive study of problem solving methodologies developed in this century was carried out and a common model for problem solving was produced. The tasks of program development were then integrated with the common model for problem solving. Then, the cognitive activities required for problem solving and program development were identified and also integrated with the common model to form a Dual Common Model for problem Solving and Program Development. This dual common model was then used to define the functional specifications for a problem solving and program development environment which was designed, implemented, tested, and integrated into the curriculum. The development of the new environment for learning problem solving and programming was followed by the planning of a cognitively oriented assessment method and the development of related instruments to evaluate the process and the product of problem solving. A detailed statistical experiment to study the effect of this environment on students\u27 problem solving and program development skills, including system testing by protocol analysis, and performance evaluation of students based on research hypotheses and questions, was also designed, implemented and the result reported

    Operational efficiency subpanel advanced mission control

    Get PDF
    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments

    A Concept of Constructing a Common Information Space for High Tech Programs Using Information Analytical Systems

    Get PDF
    The paper deals with the issues in program management used for engineering innovative products. The existing project management tools were analyzed. The aim is to develop a decision support system that takes into account the features of program management used for high-tech products: research intensity, a high level of technical risks, unpredictable results due to the impact of various external factors, availability of several implementing agencies. The need for involving experts and using intelligent techniques for information processing is demonstrated. A conceptual model of common information space to support communication between members of the collaboration on high-tech programs has been developed. The structure and objectives of the information analysis system "Geokhod" were formulated with the purpose to implement the conceptual model of common information space in the program "Development and production of new class mining equipment - "Geokhod"

    Intelligent Systems Technologies for Ops

    Get PDF
    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs

    Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    Get PDF
    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging development
    corecore