17,715 research outputs found

    Methodology to assess safety effects of future Intelligent Transport Systems on railway level crossings

    Get PDF
    There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX

    Integrating driving and traffic simulators for the study of railway level crossing safety interventions: a methodology

    Get PDF
    Safety at Railway Level Crossings (RLXs) is an important issue within the Australian transport system. Crashes at RLXs involving road vehicles in Australia are estimated to cost $10 million each year. Such crashes are mainly due to human factors; unintentional errors contribute to 46% of all fatal collisions and are far more common than deliberate violations. This suggests that innovative intervention targeting drivers are particularly promising to improve RLX safety. In recent years there has been a rapid development of a variety of affordable technologies which can be used to increase driver’s risk awareness around crossings. To date, no research has evaluated the potential effects of such technologies at RLXs in terms of safety, traffic and acceptance of the technology. Integrating driving and traffic simulations is a safe and affordable approach for evaluating these effects. This methodology will be implemented in a driving simulator, where we recreated realistic driving scenario with typical road environments and realistic traffic. This paper presents a methodology for evaluating comprehensively potential benefits and negative effects of such interventions: this methodology evaluates driver awareness at RLXs , driver distraction and workload when using the technology . Subjective assessment on perceived usefulness and ease of use of the technology is obtained from standard questionnaires. Driving simulation will provide a model of driving behaviour at RLXs which will be used to estimate the effects of such new technology on a road network featuring RLX for different market penetrations using a traffic simulation. This methodology can assist in evaluating future safety interventions at RLXs

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    Importance and applications of robotic and autonomous systems (RAS) in railway maintenance sector: a review

    Get PDF
    Maintenance, which is critical for safe, reliable, quality, and cost-effective service, plays a dominant role in the railway industry. Therefore, this paper examines the importance and applications of Robotic and Autonomous Systems (RAS) in railway maintenance. More than 70 research publications, which are either in practice or under investigation describing RAS developments in the railway maintenance, are analysed. It has been found that the majority of RAS developed are for rolling-stock maintenance, followed by railway track maintenance. Further, it has been found that there is growing interest and demand for robotics and autonomous systems in the railway maintenance sector, which is largely due to the increased competition, rapid expansion and ever-increasing expense

    Behavioural compensation by drivers of a simulator when using a vision enhancement system

    Get PDF
    Technological progress is suggesting dramatic changes to the tasks of the driver, with the general aim of making driving environment safer. Before any of these technologies are implemented, empirical research is required to establish if these devices do, in fact, bring about the anticipated improvements. Initially, at least, simulated driving environments offer a means of conducting this research. The study reported here concentrates on the application of a vision enhancement (VE) system within the risk homeostasis paradigm. It was anticipated, in line with risk homeostasis theory, that drivers would compensate for the reduction in risk by increasing speed. The results support the hypothesis although, after a simulated failure of the VE system, drivers did reduce their speed due to reduced confidence in the reliability of the system

    Geometrical and functional criteria as a methodological approach to implement a new cycle path in an existing Urban Road Network: A Case study in Rome

    Get PDF
    Most road accidents occur in urban areas and notably at urban intersections, where cyclists and motorcyclists are the most vulnerable. In the last few years, cycling mobility has been growing; therefore, bike infrastructures should be designed to encourage this type of mobility and reduce motorized and/or private transport. The paper presents a study to implement a new cycle path in the existing cycle and road network in Rome, Italy. The geometric design of the new path complies with Italian standards regarding the technical characteristics of bicycle paths, while the Highway Capacity Manual has been considered for the traffic analysis. In particular, a before-after approach has been adopted to examine and compare the traffic flow at more complex and congested intersections where the cycle path will pass. Trams, buses, cars, bikes and pedestrians were the traffic components considered in each analysis. The software package PTV VISSIM 8 allowed the simulations of traffic flows at traffic-light intersections; an original linear process has been proposed to model dynamic intelligent traffic controls, which are not admitted by the software used. The traffic analysis allowed the identification of the best option for each of the five examined intersections. Particularly, the maximum queue length value and the total number of passed vehicles have been considered in order to optimize the transport planning process. The results of this study highlight the importance of providing engineered solutions when a cycle path is implemented in a complex road network, in order to avoid negative impacts on the citizens and maximize the expected advantages

    Intelligent Perception Control System of Railway Level Crossing Gate Based on TRIZ Theory

    Get PDF
    TRIZ theory is an innovative method to analyse problems and solve them, which is widely used in many fields. In this paper, TRIZ theory is used to improve the design of railway crossing guardrail system. The use of nine-screen analysis, functional analysis, cause-effect chain analysis and other tools to analyse the problem of poor manual control effect in the railway crossing guardrail system, the use of technical contradictions, physical contradictions and other tools to improve the system design, effectively reduce the possibility of danger when cars and pedestrians cross railway crossings, improve the traffic safety and traffic order of the railway level crossing, and reduce the work burden of railway crossing caretakers
    corecore