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Abstract  

Rolling stock critical system failures require condition based maintenance (CBM) policy to optimise maintenance 
tasks and hence improve reliability and availability of service operation. In this paper, the implementation of 
CBM analysis for Class 158 Diesel Multiple Unit (DMU) train door system is presented. The condition monitoring 
of the door system information collected falls into the category of partially observable systems. Condition 
monitoring trial results of the doors is presented to show specific signs of door deterioration and repeating 
failures. A stochastic signal pulse model is proposed that could utilize CBM information to schedule optimum 
cost effective maintenance strategy.  

 

1 INTRODUCTION 
 
1.1 Rolling stock background 

Condition based maintenance of rolling stock is a major task in the railway industry because an in-service 
failure could lead to delays and passenger dissatisfaction. Moreover, in-service failure increase maintenance 
cost and hence has a knock on effect on the overall availability and reliability performance of train fleets. The 
158 DMU fleet is selected as a result of the current poor performance that is mainly attributed to the doors 
failures. Consequently safety and reliability is of paramount importance to the company. This paper focuses on 
the door systems of the Class 158 DMU units train fleet. There are 48 Class of 158 DMU trains that consist of 
mainly 2 and 3 car vehicles. Each vehicle has 4 doors and each door system consists of several functionally 
dependent components. The doors are frequently monitored at discrete time points. In this paper we attempt to 
optimize the maintenance of the door system using condition based maintenance given that they have been 
operating for certain number of months. The nature of the door system component design weaknesses is not 
revealed in this paper because of confidentiality.  

 
The reliability and availability performance of rolling stock fleet is supported by a good preventive maintenance 
plan. However, a condition based maintenance programme in expected to improve fleet reliability to an 
acceptable level. The train fleet considered in this paper is fitted with On-line Train Data Recorder (OTDR). The 
OTDR is expected to meet the varied requirements of systematic safety monitoring procedures, and can also be 
used for wider deployment of condition determined maintenance policies. An extensive review of diagnostics 
and prognostics analysis implementing condition based maintenance models is discussed in (1). Condition-
based maintenance (CBM) can be used to monitor asset health regularly in order to maximize reliability and 
availability and also in  determining necessary maintenance at the right time. A framework of condition based 
maintenance approach on rotating mechanical systems is discussed in (2). A case study on the condition 
monitoring of railway equipment train rotary door operator is presented in (3). Critical appraisal of other 
condition monitoring techniques and its application in the railway industry is discussed further in Section 3. 

 

1.2 Fleet performance data  

The train operating companies in the United Kingdom are required to provide performance data to the Rail 
Delivery Group (RDG) to show progress regarding their Public Performance Measure (PPM). The PPM is a 
combined measure of the reliability and punctuality of trains throughout the TOC’s network. A train is defined 
as having a PPM pass if it arrives at its destination within 5 minutes of the scheduled arrival – i.e. ‘on time’ and 
is not cancelled or partially cancelled.  

The DMU fleet performance is calculated by analysing the fleet in-service failures. Trains that fail in-service 
can have different degree of disruption to services for example, minutes delayed, part cancellation of a service 
or full cancellation of a service of any train. For example if a single unit of the Class 158 vehicle has a door fault 
and is delayed for 7 minutes before leaving the station. It also causes two other trains to be delayed by 5 and 
10 minutes. Very quickly a 7 minutes delay in one station can accumulate into a 100 minutes delay and 
subsequent cancellation of service. The fines attributed to delays and cancellation can increase very rapidly 
over a short space of time.  



The class 158 door systems are the second poorest performing system with about 235 incidents related to 
the door faults recorded in the last 13 periods between 2015 and 2016. The graph in Figure 1 shows the door 
incident breakdown and the defective type code “O” on the graph relate to the doors while the other codes are 
attributed to other systems.  

 

  

	

	

	

	

	

 

Figure 1 Door incident breakdown  

As part of the Class 158 DMU fleet performance improvement plan, the door faults are being reviewed to 
address root cause and hence identify potential failure modes. A comprehensive study using the reliability 
centred maintenance approach of the class 158 doors to identify critical classes of failure modes is presented in 
(4). Reliability analysis of rolling stock failure patterns is discussed in (5). From some of the literature consulted 
the preventive maintenance is considered to be one of the most difficult task to model in the field of 
maintetance and sometimes the result on preventive maintenance actions is somewhat cost effective but does 
not classify causes of breakdown incidents. To this aim condition monitoring on the door as critical system is 
envisaged and the study conducted is presented in this paper.  

2 OVERVIEW OF DOOR SYSTEM AND COMPONENTS 
 
2.1 Door system 

The class 158 DMU train is fitted with four external bi-parting swing plug doors per vehicle for both passenger 
and crew access. The train door example is presented in the picture in Figure 2 below. The doors are electrically 
controlled and pneumatically operated.  

 

 

 

 

 

 

 

 

 

 

Figure 2. 158 Door system 

When a passenger presses the illuminated door open button, the pneumatic system operates to allow air in to 
the torque cylinder. This unlocks the door over centre locking mechanism and causes the torque cylinder to 
rotate. The torque cylinder operates linkages attached to each door leaf opening the door. When a passenger 
presses the illuminated close button or the conductor presses the closed button on the door control panel the 



torque cylinder operates to close the open door. The door closes and is mechanically locked over centre as 
show in the control panel in Figure 3.  

 

 

 

 

 

 

 

 

 

 

Figure 3 Door control panel 

 

2.2 Maintenance of door system  

Maintenance conducted on the door system is referred to an exam. Exam A and B are conducted on the trains. 
Exam A is a shorter exam than the Exam B and which consist of conducting regular maintenance on safety 
critical systems every 10k miles. For example door components are checked for functionality during an A exam 
to ensure that the passenger doors are functioning properly. The test conducted on doors every 10k miles 
presents a chance to conduct opportunistic maintenance. Bedford and Alkali (6) discuss the competing risk 
incorporating opportunistic maintenance models. A delay time model is proposed in an attempt to model 
preventive maintenance policy of train doors presented in (7). A failure mode, effects and criticality analysis of 
rolling stock critical systems is conducted in (8) and the outcome is used to further proposed a generic 
framework using risk-based maintenance. The difficulty of optimising the preventive maintenance of the doors 
is beneficial in economic terms however it is at an expense of reduced fleet availability for service operations. 
To this aim condition based maintenance is envisaged as a way forward towards improving the maintenance 
actions and hence improve the reliability, and availability of rolling stock the door system. The design and 
evaluation of remote measurement for the online monitoring of railway vibration signals is discussed and 
analysis of vibrations results is presented in (9). The paper presented in (9) also provide a very good 
framework for utilizing on-line condition monitoring of railway assets.  

3 CONDITION BASED MAINTENANCE 

3.1 Condition monitoring  

Condition-based maintenance (CBM) is a maintenance program that recommends maintenance decisions based 
on the information collected through condition monitoring (1). It consists of three main steps: data acquisition, 
data processing and maintenance decision-making. Condition monitoring data are very versatile. Reliability has 
always been an important aspect of assessing equipment design and maintenance plays a key role in ensuring 
an efficient way to assure satisfactory level of reliability. Some relevant studies using condition monitoring 
techniques are investigated for example a disgnosis of fault test results from a new class of closed-loop electric 
train door in (10), were used to develop a mathematical model that could form the basis of a fast-response 
condition monitoring system. The use of sensor in vital in the use condition monitoring of systems. A study of 
train sensor and reporting systems is essential in condition monitoring to support the decision maker on which 
maintenance policy to consider. A pattern recognition approach for the prediction of infrequent target events in 
floating train data sequences within a preventive maintenance framework is discussed in (11). The paper in 
(12) present a research conducted on how to improve the reliability of single-throw equipment used in railway 
signalling processes, rolling stock as well as power systems. The maintenance strategy of commercial trains is 
supported with both positioning and communication systems as well as onboard intelligent sensors monitoring 
various subsystems all over the train fleet, and thus providing real-time flow of information that is transferred 
to a centralized data servers via wireless technology is discussed in (13). Furthermore, the paper in (14) 
present the analysis and a case study using condition monitoring technique and its application in the railway 
industry. 

Condition monitoring in the railway industry is not new however its application on critical systems is somewhat 
scarce. Other railway critical systems that condition monitoring have been applied to such as axle and bearing 
units is studied (15) and (16) respectively. A fault detection method for railway infrastructure point systems is 



discussed in (17). A potential improvement of in-service inspection of wheel set using fatigue analysis is 
discussed in (18). A new method on condition monitoring of railway level crossing is presented also presented 
in (19).     

3.2 Data acquisition  

The Class 158 trains considerd in this paper are fitted with data acquisition system called the Nexala System. 
The system is compatible with the OTDR and can be used to analyse data approximately four seconds after 
being transmitted from the unit. The data is then analysed further to identify faults or warnings. Warnings flag 
up possible future problems in the form of signal pulse. This is processed immediately information is received 
and flagged up to the designated user or via email. Currently the vehicle transmits recording of driver actions 
and safety systems rather than the performance of the vehicle. The purpose of some of these channels is to 
allow for greater monitoring of the door systems. The following systems monitored are; the Door Key Switch 
“On” for doors A, B, C, & D, and the Passenger Door “Closed” for doors A, B, C & D.   

The Door Key Switch (DKS) and the Door Interlock Switch (DIS) are non-intrusive systems and somewhat 
contribute to technical incident resulting to delays in-service. The technical incidents in Table 1 below give an 
overview of top 3 failure modes by number of technical incidents related to the DKS and DIS system.  

 

Table 1. Top 3 Failure modes technical incidents 

Year  Failure model 1   Failure mode 2     Failure mode 3 

2012 

2013 

DKS defective     DIS adjusted        DIS defective 

DKS defective     DIS adjusted        DIS defective 

2014 DIS adjusted      DIS adjusted        DIS short circuit 

 
 
Maintenance is conducted to capture the top 3 failure modes every 7k miles in 2012 and 2013 respectively and 
in 2014 maintenance is conducted at 10k miles. The percentage of incidents and delays caused by the top 3 
failure modes is presented in Table 2  
 

 
Table 2. Top 3 % technical incidents & delays 

Year             Maintenance       % of incidents       % of delays 

2012 

2013 

       7k miles                    66%                    75% 

       7k miles                    43%                     35% 

2014            10k miles                   38%                         16% 

 

Notice from Table 2 above that the percentage technical incidents and delays caused by the DIS and DKS 
top 3 failure modes decreases as the maintenance intervals are extended over the years to 10k miles. However 
less maintenance is envisaged but has to be in compliance with railway safety standards procedures. To this 
aim the condition based maintenance pave a way as a good rationale for investigating the DKS and DIS that is 
addressed in this paper.        

3.3 Condition monitoring trial results   

 
Condition monitoring trial is conducted on one of the Class 158 (738) units. The trial incidents recorded show 
the most common causes of incidents attributed to the door DKS and DIS systems. The door slow to close is 
determined when the time taken to close the door is more than 8 seconds over the centre after pressing the 
door close button on the DKS Panel. Once the door close command is initiated the door release trigger and 
closes the Left Hand Side (LHS) or Right Hand Side (RHS).  A “pulse” signal and the hustler alarm sound for 3 
seconds before the doors start to close. It takes about 4 to 4.5 seconds for the door to close. For example if the 
door setting is calibrated with an additional 0.5 seconds it will flag many issues in relation to accuracy of 
timing.  



Figure 4 indicates that the number of slow to close incidents on the door C is as high as 32 and this is due to 
the accuracy in the settings. However, after the rule refinement in the setting as shown in Figure 5, it highlights 
that the number is reduced to 2 which n principle is a 93.75% decrease in false reports.  

 

 

 

 

 

 

 

 

Figure 4. Slow to close incidents 

 

 

 

 

 

 

 

Figure 5. Slow to close incidents 

 

The graph in Figure 6 highlights the new “slow to close”, which identify performance issues in-service. 
Therefore, specific doors showing signs of deterioration and repeat failures (C door) can be recalled for 
performance improvements. It would be ideal to confirm the door C as being slow to close at the next 
maintenance interval.  

 

 

 

 

 

 

 

 

Figure 6.  C door slow to close incident 

>8	sec	

1	sec	slower	



 

From the trial conducted it is evident that there is certainly a defect associated with door C however the 
question is what is the cause of slow to close. The condition monitoring trial on the class 158 doors has given 
us an insight and the capability to flag up potential failures as a form of a “signal pulse”. “Signal Pulse” 
monitors if the sensor signal from the DKS or DIS is active for less than a second (0ms – 1000ms). This 
identifies if there are any intermittent failures during service, which do not get identified during regular 
maintenance. The graph in Figure 7 indicate an intermittent failure on DKS door C.  

 

Figure 7.  DKS door C signal pulse incident 

Therefore, the signal pulse detected in Figure 7 give a clear indication of an intermittent failure. The condition 
monitoring trial has highlighted an intermittent failure with DKS door C previously (Figure 6). Therefore, this 
new readings (Figure 7) suggest that there is an underlying cause for the pulse signals that have not been 
corrected. Therefore, an OTMR download must be taken to confirm both recent intermittent failures and 
corrective action must be taken to prevent repeat failures of DKS door C signal recurring. A signal pulse occur 
randomly during monitoring and in this paper we assume that signal events to be stochastic. To this aim an 
attempt is made to model the intermittent failures using stochastic point process model.    

4 STOCHASTIC PROCESSES 

Stochastic processes are ways of quantifying the dynamic relationship of sequences of random events (20). A 
stochastic model predicts a set of possible outcomes weighted by their likelihood and probabilities. The models 
play an important role in elucidating many areas of natural applications. Stochastic point processes have been 
applied to repairable systems. They are mathematical models characterized by highly localized events 
distributed randomly in a continuum. The continuum is time and the highly localized events are failures, which 
are assumed to occur at instants within the continuum (21). The entire technique developed for point process 
models is potentially applicable to systems’ failure data. The condition monitoring data presented earlier 
depicting signal pulse as intermittent failures is used and an attempt is made to predict the distribution of time 
to failure of the door components. 
 

4.1 Stochastic Point process  

A stochastic point process represents the successive arrival and inter-arrival times of system failure, under 
the assumption that a system is operated whenever possible and that repair times are negligible. The pattern of 
failures necessarily develops in calendar time. For example the annual railway calendar in Scotland is split into 
13 four-week periods as mentioned earlier in the Section 1.2. If a train is taken out of service and no repair is 
considered, the exact connection to calendar time disappears but the successive failures are still calendar time 
ordered (22).  

 
 



4.2 Stochastic signal pulse model  

The stochastic signal pulse model assumes that each pulse given is related to the actual door lifetime, but the 
model does not explicitly model the way in which the pulse could be attributed. This model proposed is a new 
development and is the main contribution in this paper. The model explicitly assumes the maintenance decision 
maker knows some kind of information about the state of the door system. The model is somewhat similar to 
the signal opportunity model in (6). The signal pulse model also has some of the features of the delay-time 
model discussed in (23), and also similar to the degradation model but differs in some important respects.  

These signals pulse occur randomly but may be observed by the decision maker using condition monitoring 
tool and the failure mode identified could attributed to any of the top 3 failure modes associated to the DKS and 
the DIS door components. The modelling of the signal pulses give an idea and some knowledge of the state of 
the door system, and hence that the masking of signal pulse data will be correlated to the actual intermittent 
failure times.  

Let T1, T2, T3,… be the times to successive intermittent failures of the door system and let Si = Ti
 
- Ti-1 be the 

time representing the signal pulse between failure i - 1 and failure i. The Ti and Si are random variables and we 
define ti

 
and si to be their corresponding realized values. If we define an increasing sequence of signal times S0 

= 0, S1, S2,. . ., which are assumed independent but not necessarily identically distributed, and define further a 
failure rate l(t), t > 0 for each period after the i–1th signal Si -1. The Distribution of the intermittent failure time 
T is defined conditionally. The probability of the door systems surviving a signal ith signal T > Si is equal 
 

exp - λi (t) dt0

Si -Si-1
∫

⎛

⎝
⎜

⎞

⎠
⎟         (1) 

 

In this model it is assumed that the decision maker is aware of the signal times and the failure rates, and has 
adopted a decision rule saying that the first signal pulse given off attributed by any of the doors which is 
correlated to the intermittent failures will be used. If we assume that the times between successive signal is 
constant with time. This implies that the times between successive signals follow an exponential distribution. 
The expression for the conditional distribution function in terms of the signals is given in Equation (2) as 

 

 

          (2) 

 

 

Where li is the failure rate of the doors and Sj is the largest signal pulse time less than t. The model proposed 
here is a general class of models in (24) and also mentioned in (6).  

5 CONCLUSIONS 

The condition monitoring techniques considered in this paper and the series of example scenarios associated 
with the rolling stock door system is presented. The challenges associated to door performance and reliability 
improvement, and the effect it has on service operations are clearly highlighted. The condition monitoring trial 
result conducted on the door systems is presented. The outcome of the trial demonstrates a new development 
towards monitoring state of the critical components (DKS and DIS) of the door systems is addressed.  

The stochastic signal pulse model with random exponential features is proposed and has been discussed in this 
paper. The data arising from monitoring the state of the door systems occur randomly and stochastic point 
processes is deemed appropriate to consider within the framework of the proposed signal pulse model. The 
model considers the way in which intermittent failure data is censored by preventive maintenance. The model is 
inspired by both a study of the practices in the railway industry. Simulation of the proposed signal pulse model 
to predict the time to failure of the door system is envisaged and the simulation work is still an on going and 
will be presented in future publications. 
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