1,817 research outputs found

    Spectral function of the Anderson impurity model at finite temperatures

    Full text link
    Using the functional renormalization group (FRG) and the numerical renormalization group (NRG), we calculate the spectral function of the Anderson impurity model at zero and finite temperatures. In our FRG scheme spin fluctuations are treated non-perturbatively via a suitable Hubbard-Stratonovich field, but vertex corrections are neglected. A comparison with our highly accurate NRG results shows that this FRG scheme gives a quantitatively good description of the spectral line-shape at zero and finite temperatures both in the weak and strong coupling regimes, although at zero temperature the FRG is not able to reproduce the known exponential narrowing of the Kondo resonance at strong coupling.Comment: 6 pages, 3 figures; new references adde

    A possible signature of cosmic neutrino decoupling in the nHz region of the spectrum of primordial gravitational waves

    Get PDF
    In this paper we study the effect of cosmic neutrino decoupling on the spectrum of cosmological gravitational waves (GWs). At temperatures T>>1 MeV, neutrinos constitute a perfect fluid and do not hinder GW propagation, while for T<<1 MeV they free-stream and have an effective viscosity that damps cosmological GWs by a constant amount. In the intermediate regime, corresponding to neutrino decoupling, the damping is frequency-dependent. GWs entering the horizon during neutrino decoupling have a frequency f ~ 1 nHz, corresponding to a frequency region that will be probed by Pulsar Timing Arrays (PTAs). In particular, we show how neutrino decoupling induces a spectral feature in the spectrum of cosmological GWs just below 1 nHz. We briefly discuss the conditions for a detection of this feature and conclude that it is unlikely to be observed by PTAs.Comment: 11 pages, 2 figures. V2: References Adde

    Enhanced reaction kinetics in biological cells

    Full text link
    The cell cytoskeleton is a striking example of "active" medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.Comment: 10 pages, 2 figure

    Relic neutrino decoupling including flavour oscillations

    Get PDF
    In the early universe, neutrinos are slightly coupled when electron-positron pairs annihilate transferring their entropy to photons. This process originates non-thermal distortions on the neutrino spectra which depend on neutrino flavour, larger for nu_e than for nu_mu or nu_tau. We study the effect of three-neutrino flavour oscillations on the process of neutrino decoupling by solving the momentum-dependent kinetic equations for the neutrino spectra. We find that oscillations do not essentially modify the total change in the neutrino energy density, giving N_eff=3.046 in terms of the effective number of neutrinos, while the small effect over the production of primordial 4He is increased by O(20%), up to 2.1 x 10^{-4}. These results are stable within the presently favoured region of neutrino mixing parameters.Comment: 18 pages, 2 figure

    Phase diagram of the random frequency oscillator: The case of Ornstein-Uhlenbeck noise

    Full text link
    We study the stability of a stochastic oscillator whose frequency is a random process with finite time memory represented by an Ornstein-Uhlenbeck noise. This system undergoes a noise-induced bifurcation when the amplitude of the noise grows. The critical curve, that separates the absorbing phase from an extended non-equilibrium steady state, corresponds to the vanishing of the Lyapunov exponent that measures the asymptotic logarithmic growth rate of the energy. We derive various expressions for this Lyapunov exponent by using different approximation schemes. This allows us to determine quantitatively the phase diagram of the random parametric oscillator.Comment: to appear in Physica

    Decoupling of the DGLAP evolution equations by Laplace method

    Full text link
    In this paper, we derive two second- order of differential equation for the gluon and singlet distribution functions by using the Laplace transform method. We decoupled the solutions of the singlet and gluon distributions into the initial conditions (function and derivative of the function) at the virtuality Q02Q_{0}^{2} separately as these solutions are defined by: \begin{eqnarray} F_{2}^{s}(x,Q^{2}) &=& \mathcal{F}(F_{s0}, \partial F_{s0})\nonumber &&\mathrm{and} \nonumber G(x,Q^{2}) &=& \mathcal{G}(G_{0}, \partial G_{0}).\nonumber \end{eqnarray} We compared our results with the MSTW parameterization and the experimental measurements of F2p(x,Q2)F_{2}^{p}(x,Q^{2}).Comment: 10 pages, 3 figure

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    High energy behaviour of form factors

    Get PDF
    We solve renormalization group equations that govern infrared divergences of massless and massive form factors. By comparing to recent results for planar massive three-loop and massless four-loop form factors in QCD, we give predictions for the high-energy limit of massive form factors at the four- and for the massless form factor at five-loop order. Furthermore, we discuss the relation which connects infrared divergences regularized dimensionally and via a small quark mass and extend results present in the literature to higher order.Comment: 21 page
    corecore