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Abstract

In the early universe, neutrinos are slightly coupled when electron-positron pairs
annihilate transferring their entropy to photons. This process originates non-thermal
distortions on the neutrino spectra which depend on neutrino flavour, larger for νe

than for νµ or ντ . We study the effect of three-neutrino flavour oscillations on
the process of neutrino decoupling by solving the momentum-dependent kinetic
equations for the neutrino spectra. We find that oscillations do not essentially modify
the total change in the neutrino energy density, giving Neff = 3.046 in terms of
the effective number of neutrinos, while the small effect over the production of
primordial 4He is increased by O(20%), up to 2.1×10−4. These results are stable
within the presently favoured region of neutrino mixing parameters.
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1 Introduction

The existence of a relic sea of neutrinos is a generic prediction of the stan-
dard hot big bang model, in number only slightly below that of relic pho-
tons that constitute the Cosmic Microwave Background (CMB). The presence
of the cosmic neutrino background has been indirectly established both at
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MeV temperatures by the accurate agreement between the calculated and
observed primordial abundances of light elements from Big Bang Nucleosyn-
thesis (BBN) and at later epochs by data on the anisotropies of the CMB and
the distribution of Large Scale Structures (LSS) in the universe, through the
contribution of neutrinos to the radiation content.

These cosmic neutrinos were kept in equilibrium by frequent weak interactions
with other particles until the temperature of the Universe was of order 2-5
MeV, when these interactions became ineffective and the process of neutrino
decoupling took place. The standard picture in the instantaneous decoupling
limit is very simple (see e.g. [1]): coupled neutrinos had a momentum spectrum
with an equilibrium Fermi-Dirac (FD) form with temperature T ,

feq(p) =
[

exp
(

p − µν

T

)

+ 1
]−1

, (1)

which is preserved after decoupling, since both neutrino momenta and temper-
ature redshift identically with the universe expansion. Here we have included
a potential neutrino chemical potential µν that would exist in the presence
of a neutrino-antineutrino asymmetry, but it was shown in [2] that the strin-
gent BBN bounds on µνe

apply to all flavours, since neutrino oscillations lead
to flavour equilibrium before BBN. Thus the contribution of a relic neutrino
asymmetry can be safely ignored.

Shortly after neutrino decoupling the photon temperature drops below the
electron mass, favouring e± annihilations that heat the photons. If one assumes
that this entropy transfer did not affect the neutrinos because they were al-
ready completely decoupled, it is easy to calculate the difference between the
temperatures of relic photons and neutrinos Tγ/Tν = (11/4)1/3 ≃ 1.40102.
However, the processes of neutrino decoupling and e± annihilations are suffi-
ciently close in time so that some relic interactions between e± and neutrinos
exist. These relic processes are more efficient for larger neutrino energies, lead-
ing to non-thermal distortions in the neutrino spectra and a slightly smaller
increase of the comoving photon temperature, as noted in previous works (for
early references, see [3] and the full list given in the review [4]).

A proper calculation of the process of non-instantaneous neutrino decou-
pling demands solving the momentum-dependent Boltzmann equations for the
neutrino spectra, a set of integro-differential kinetic equations that are diffi-
cult to solve numerically. In the early 1990s several works [5,6,7] performed
momentum-dependent calculations assuming some approximations, such as
Boltzmann statistics for neutrinos, while the full numerical computation was
later carried out in refs. [8,9,10,11]. Finally, a further refinement involves the
inclusion of finite temperature QED corrections to the electromagnetic plasma,
as done in [12,13].
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The distortions produced on the neutrino momentum distributions are small
and their direct observation is out of question. However, they should be in-
cluded in a calculation of any observable related to relic neutrinos. For in-
stance, non-thermal distortions lead to an enhanced number density of relic
neutrinos which modifies e.g. the contribution of massive neutrinos to the
present energy density of the universe. Previous analyses focused on two in-
teresting effects. The first one concerns the contribution of neutrinos to the
total radiation content of the universe, parametrized in terms of the effective
number of neutrinos [14,15] Neff , through the relation 1

ρR =

[

1 +
7

8

(

4

11

)4/3

Neff

]

ργ , (2)

where ργ is the energy density of photons, whose value today is known from
the measurement of the CMB temperature. This equation holds as long as
all neutrinos are relativistic and, in principle, Neff can receive a contribution
from other relativistic relics. In the following we will restrict our analysis to the
standard case, where the departure of Neff from 3 is due to neutrino heating by
e± annihilations. The second effect of the non-thermal distortions leads to a
modification of the outcome of BBN, in particular a change in the production
of primordial 4He. From previous works, an increase of order 1.5×10−4 in the
4He mass fraction Yp was found [5,6,7,8,9,10,11]. Thus the effect on BBN is
small, but it has to be taken into account in precise BBN codes [16,17].

In general, previous analyses of neutrino decoupling did not include flavour
neutrino oscillations, although their potential effect was already noted long
ago [18]. The exception is a work by Hannestad [19], who calculated the effect
of two-neutrino oscillations on neutrino heating, finding that the neutrino en-
ergy density was slightly higher while the increase in the primordial abundance
of 4He due to non-thermal features of neutrino decoupling could be even dou-
bled. In this work, some approximations were taken, such as integrated kinetic
equations (quantum rate equations or QREs) and Maxwell-Boltzmann statis-
tics. In addition, a very recent paper [20] considered the effects of neutrino
oscillations in scenarios with low-reheating temperatures (below 10 MeV), us-
ing momentum-dependent equations with massless e± in the collision terms,
but ignoring neutrino-neutrino collisions.

In the present paper we perform a new calculation of neutrino decoupling solv-
ing the momentum-dependent kinetic equations as in [9,11,13], but including

1 This equation only holds after the reheating is completed, so it would be wrong
if used in BBN calculations. For larger temperatures, one should modify it with
(4/11)4/3 → (Tν0/Tγ0)

4, where Tν0/Tγ0 traces the evolution derived just by the
entropy conservation law, and add the contribution of e± while not completely non-
relativistic.
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also the effect of flavour neutrino oscillations following the analysis in [2]. Our
aim is to compare our results with the simplified analysis in [19], checking the
accuracy of its approximations. The numerical evaluation of the Boltzmann
equations is computationally demanding, but we do not need to perform a
scan over all the space of neutrino mixing parameters, since presently they are
already known with good precision 2 (except for the mixing angle θ13 which,
as we will see, has a minor effect). We find that the results concerning neu-
trino decoupling remain unchanged within the presently favoured regions for
oscillations parameters.

2 Neutrino decoupling in presence of flavour oscillations

In this section we list the set of equations which rule the process of neutrino
decoupling in the epoch of the early universe prior to BBN. We describe the
main terms that appear in the kinetic equations, in particular those arising
from neutrino oscillations, and describe our method to solve these equations
numerically.

2.1 Equations

In order to study neutrino decoupling in the early universe in the presence
of flavour oscillations, we describe the neutrino ensemble in the usual way by
generalized occupation numbers, i.e. by 3×3 density matrices for neutrinos
and anti-neutrinos as described in [25,26]. The form of the neutrino density
matrix for a mode with momentum p is

̺(p, t) =







̺ee ̺eµ ̺eτ

̺µe ̺µµ ̺µτ

̺τe ̺τµ ̺ττ





 . (3)

The diagonal elements correspond to the usual occupation numbers of the
different flavours, while the off-diagonal terms are non-zero in the presence
of neutrino mixing. There exists a corresponding set of equations for the an-
tineutrino density matrix ¯̺, but in absence of a neutrino asymmetry it is not
needed since antineutrinos follow the same the evolution as neutrinos.

2 Note that we focus on the standard case of three active neutrinos and do not
consider active-sterile mixing (see instead e.g. refs. [21,22,23,24]).
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The equations of motion for the density matrices relevant for our situation of
interest in an expanding universe are [25]

i (∂t − Hp ∂p) ̺p =

[(

M2

2p
− 8

√
2GF p

3m2
W

E

)

, ̺p

]

+ C[̺p] , (4)

where H is the Hubble parameter, GF is the Fermi constant and mW the W
boson mass. We use the notation ̺p = ̺(p, t) and [·, ·] denotes the commutator.
The vacuum oscillation term is proportional to M2, the mass-squared matrix
in the flavour basis that is related to the diagonal one in the mass basis
diag(m2

1, m
2
2, m

2
3) via the neutrino mixing matrix,















c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13















. (5)

Here cij = cos θij and sij = sin θij for ij = 12, 23, or 13. Since we have
assumed CP conservation, there are five oscillation parameters: ∆m2

21 = m2
2−

m2
1, ∆m2

31 = m2
3 −m2

1, θ12, θ23 and θ13. From a global analysis of experimental
data on flavour neutrino oscillations, the values of the first four parameters
are determined, while we only have an upper bound on θ13. As a reference, we
take the best-fit values from ref. [27],

(

∆m2
21

10−5 eV2 ,
∆m2

31

10−3 eV2 , s2
12, s

2
23, s

2
13

)

= (8.1, 2.2, 0.3, 0.5, 0) , (6)

while for θ13 we will also consider the value allowed at 3σ, s2
13 = 0.047.

The decoupling of neutrinos takes place at temperatures of the order MeV,
when neutrinos experience both collisions and refractive effects from the me-
dium. The latter correspond in Eq. (4) to the term proportional to the diagonal
matrix E, that represents the energy densities of charged leptons. For exam-
ple, Eee is the energy density of electrons and positrons. Note that we have
neglected two terms in Eq. (4) with respect to the complete form shown in
[25]. The first one is the usual refractive term

√
2GFL that is proportional to

the charged-lepton asymmetries. This asymmetric term is negligible at early
times (high temperatures) compared to the E term, while at temperatures
near n/p freeze out (T ≃ 1 MeV) it is negligible compared to the vacuum
term M2/2p for the mass-squared differences ∆m2

31 and ∆m2
21. The second re-

fractive term not included in Eq. (4) arises from neutrino-neutrino interactions
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and is proportional 3 to (̺− ¯̺), thus it vanishes for zero neutrino-antineutrino
asymmetry.

Finally, the collisions of neutrinos with e± or among themselves are described
by the term C[·], which is proportional to G2

F. For the off-diagonal complex
terms of the density matrix we approximate collisions with a simple damping
prescription of the form C[̺αβ(p)] = −Dp̺αβ(p), with the same damping
functions Dp as in [2]. Instead, for the diagonal ones, in order to properly
calculate the neutrino heating process we must consider the exact collision
integral Iνα

, that includes all relevant two–body weak reactions of the type
να(1) + 2 → 3 + 4 involving neutrinos and e±,

Iνα

[

fνe
, fνµ

, fντ

]

=
1

2 E1

∑

reactions

∫

d3p2

2 E2 (2 π)3

d3p3

2 E3 (2 π)3

d3p4

2 E4 (2 π)3

×(2 π)4 δ(4) (p1 + p2 − p3 − p4) F [̺αα(p1), f2, f3, f4] |M12→34|2 , (7)

Here F ≡ f3f4 (1 − ̺αα(p1)) (1 − f2) − ̺αα(p1)f2 (1 − f3) (1 − f4) is the sta-
tistical factor (when the particle i = 2, 3, 4 is a neutrino νβ one substitutes
fi with the corresponding diagonal term ̺ββ(pi)) , and M12→34 is the process
amplitude. In ref. [9] the complete list of relevant processes and corresponding
squared amplitudes are reported, and it is shown that some of the integrals
can be analytically performed, reducing Iνα

to a two-dimensional integral. We
have actually checked that including the effect of mixing in the statistical
terms of Eq. (7) as in [25] leads to very small modifications of our results (a
similar conclusion was found in [19] with QREs and in the Boltzmann limit).

The kinetic equations for the neutrino density matrix are supplemented by
the continuity equation for the total energy density ρR,

dρR

dt
= −3H (ρR + PR) , (8)

where PR is the total pressure of the relativistic plasma: the three neutrino
states and the electromagnetic components γ and e± (always in equilibrium
with temperature Tγ). This equation gives the evolution of the photon tem-
perature Tγ . Finally, the finite temperature QED corrections to the electro-
magnetic plasma modify the equations of state of e± and γ and are taken into
account as described in [13].

3 Here the density matrix ̺ (¯̺) is the integrated neutrino (antineutrino) density
matrix so that, for example, ̺ee is the total number density of electron neutrinos.
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2.2 Computation and technical issues

Our set of Eqs. (4) and (8) are simplified when we use the following dimen-
sionless variables instead of time, neutrino momenta and photon temperature:

x ≡ mR, y ≡ pR, z ≡ TγR , (9)

where m is an arbitrary mass scale that we choose to be the electron mass
and R is the universe scale factor (normalized so that R(t) → 1/Tγ at large
temperatures). For details and the specific forms of the different terms in the
equations, we refer the reader to the appendix in [2] (but note that in this
work the mass scale m was chosen to be 1 MeV).

The kinetic equations (4) are integro-differential due to the collision terms
in Eq. (7). In previous works without neutrino oscillations, the system was
solved either using a discretization in a grid of dimensionless momenta as in
[8,9] or with an expansion of the non-thermal distortions in moments as in
[11,13]. Here we follow the discretization method, calculating the evolution of
the neutrino density matrix on a grid of 100 neutrino momenta in the range
yi ∈ [0.02, 20].

We start to compute the evolution of the system at a value of the param-
eter xin = me/(10 MeV), when weak interactions were effective enough to
keep neutrinos in equilibrium with the electromagnetic plasma. Therefore, the
initial values 4 of the components of the density matrix ̺(yi, x) are either
[exp(yi/zin) + 1]−1 (diagonal components) or zero (off-diagonal), since flavour
oscillations are suppressed at large temperatures by medium effects. Finally,
the initial value of the dimensionless photon temperature is zin = 1.00003,
which can be found solving Eq. (8) with neutrinos fully coupled [10].

The system of equations is solved from xin until a value of x when both
the neutrino distortions and the comoving photon temperature z are frozen,
approximately at xfin ≃ 35. In order to solve simultaneously for the generation
of the distortion and the effect of flavour oscillations we proceed as follows.
First the change in the diagonal terms of ̺(yi, x) from the collision integrals
(neutrino heating) is found in a step ∆x whose value is set by the typical time
scale of electron-positron annihilation rate (we use 1000 steps in log(x) in the
range [xin, xfin]). Then the (fast) effect of the oscillations is then calculated by
following the neutrino density matrix evolution on a smaller x step, given by
∆x/100.

4 Actually we solve the kinetic equations for the components of ̺(yi, x) normalized
to the FD distribution in Eq. (1).
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3 Results

We have numerically calculated the evolution of the neutrino density matrix
solving the system of Eqs. (4) and (8), during the full process of neutrino
decoupling. In order to compare with previous results, we have also calculated
the case without neutrino mixing, with and without QED corrections. When
flavour neutrino oscillations are included, we consider two cases, corresponding
to the best-fit values of the mixing parameters in Eq. (6) and either θ13 = 0
or s2

13 = 0.047.

3.1 Evolution of the non-thermal distortions

We present in Fig. 1 the evolution of the distortion of the neutrino distribution
as a function of x for a particular neutrino momentum (y = 10). In the absence
of mixing, the evolution of fν has been described in previous analyses (see
e.g. [9,11]). At large temperatures or x <∼ 0.2, neutrinos are in good thermal
contact with e± and their distributions only change keeping an equilibrium
shape with the photon temperature [exp(y/z(x)) + 1]−1 (the Tγ line in the
figure) . In the intermediate region 0.2 <∼ x <∼ 4, weak interactions become
less effective in a momentum-dependent way, leading to distortions in the
neutrino spectra which are larger for νe’s than for the other flavours. Finally,
at larger values of x neutrino decoupling is complete and the distortions reach
their asymptotic values. For the particular neutrino momentum in Fig. 1, the
final value of the distribution is 4.4% (νe) and 2% (νµ,τ ) larger than in the
instantaneous decoupling limit.

It is obvious that flavour neutrino oscillations will modify the generation of
neutrino distortions if they are effective at the relevant range of temperatures.
This depends on the different terms in the kinetic equations for the neutrino
density matrix, in particular the relative importance of the oscillation term
(of order ∆m2/2p) which grows as x2, with respect to the background poten-
tial proportional to the energy density of electrons and positrons (decreases
as x4), since the other charged leptons have already disappeared. In the range
x <∼ 0.3 the refractive term dominates, suppressing flavour oscillations so that
the neutrino distributions grow as in the absence of mixing. Then the e± po-
tential adiabatically disappears, leading to the usual MSW-type evolution and
a convergence of the flavour neutrino distortions. Finally, the oscillation term
dominates and oscillations proceed as in vacuum (in an expanding universe,
as calculated in [28]). As can be seen for example in Fig. 1, if θ13 = 0 the
final value of the distribution of νe’s at y = 10 is reduced to 3.4% while for
νµ,τ increases to 2.4%. When we take s2

13 = 0.047, we find 3.2% for νe’s and a
different distortion for νµ’s (2.6%) and ντ ’s (2.4%).
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Fig. 1. Evolution of the distortion of the νe and νx = νµ,τ spectrum for a particular
comoving momentum (y = 10). In the case with θ13 6= 0 one can distinguish the dis-
tortions for νµ (middle line) and ντ (lower line). The line labeled with Tγ corresponds
to the distribution of a neutrino in full thermal contact with the electromagnetic
plasma.

For a more detailed description of the evolution of flavour oscillations at this
epoch, we refer the reader to [2].

3.2 Frozen spectra and Neff

We show in Fig. 2 the asymptotic values of the flavour neutrino distribution,
for the cases without oscillations and with non-zero mixing. The dependence
of the non-thermal distortions in momentum is well visible, which reflects the
fact that more energetic neutrinos were interacting with e± for a longer period.
Moreover, the effect of neutrino oscillations is evident, reducing the difference
between the flavour neutrino distortions.

Once we have found the final neutrino distributions, the frozen values of some
quantities characterizing neutrino heating can be calculated. In Tables 1 and
2 we present our results for the dimensionless photon temperature zfin, the
change in the neutrino energy densities with respect to ρν0

(the energy density
in the instantaneous decoupling limit) and the asymptotic effective number of
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Fig. 2. Frozen distortions of the flavour neutrino spectra as a function of the
comoving momentum. In the case with θ13 6= 0 one can distinguish the distortions
for νµ (middle line) and ντ (lower line).

neutrinos Neff as defined in Eq. (2), that can be calculated as

Neff =
(

z0

zfin

)4
(

3 +
δρνe

ρν0

+
δρνµ

ρν0

+
δρντ

ρν0

)

, (10)

where z0 = (11/4)1/3 ≃ 1.40102. Note that one can not relate zfin with a
ratio of photon and neutrino temperatures, since the neutrino spectra are
non-thermal and strictly speaking Tν is not defined.

In the absence of mixing, our results in Table 1 without QED corrections agree
with previous works [9,11], while including QED corrections we find a slightly
smaller zfin than [13] that is due to a more accurate numerical calculation of
the evolution of z(x). After evaluating the precision in the numerical calcu-
lations (modifying our choice for the grid in neutrino momenta, the initial
value of x, etc), we estimate that the accuracy in the values of Neff is ±0.002.
For comparison, we also show the results of two toy cases where all neutrino
flavours have the same interactions with e+ − e− as νe’s or νµ’s, respectively.

When flavour oscillations are taken into account, our results in Table 2 show
that, while the modifications in the individual values of ρνα

can be clearly seen,
the contribution of neutrino heating to the total relativistic energy density is
almost unchanged, with a value of Neff = 3.046. The difference with respect to
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Table 1
Frozen values of zfin, the neutrino energy densities δρ̄να

≡ δρνα
/ρν0

, Neff and ∆Yp

in the absence of flavour neutrino mixing.

Case zfin δρ̄νe
δρ̄νµ,τ

Neff ∆Yp

No mixing 1.3978 0.94% 0.43% 3.046 1.71×10−4

No mixing (no QED) 1.3990 0.95% 0.43% 3.035 1.47×10−4

No mixing (all νe) 1.3966 0.95% 0.95% 3.066 3.57×10−4

No mixing (all νµ) 1.3986 0.35% 0.35% 3.031 1.35×10−4

Table 2
Frozen values of zfin, the neutrino energy densities δρ̄να

≡ δρνα
/ρν0

, Neff and ∆Yp

including flavour neutrino oscillations.

Case zfin δρ̄νe
δρ̄νµ

δρ̄ντ
Neff ∆Yp

θ13 = 0 1.3978 0.73% 0.52% 0.52% 3.046 2.07×10−4

sin2 θ13 = 0.047 1.3978 0.70% 0.56% 0.52% 3.046 2.12×10−4

Bimaximal (θ13 = 0) 1.3978 0.69% 0.54% 0.54% 3.045 2.13×10−4

the unmixed case is only seen in the results within the following decimal place:
3.0458 (no oscillations) to 3.0455 (with oscillations, either s2

13 = 0 or 0.047).
We checked that even in the case of bimaximal mixing where θ12 = θ23 = π/4
and θ13 = 0 (disfavoured by present experimental data) the change in Neff is
minimal, with a very small decrease to 3.0454. Thus the presence of neutrino
oscillations leads to slightly less efficient neutrino heating 5 . Our findings are
therefore quite different than those presented in [19], where a very small but
positive change in the neutrino energy density with respect to the unmixed
case was found. This difference is probably due to the approximations used in
that paper.

The effect of neutrino heating on any quantity that characterizes relic neutri-
nos is found replacing the Fermi-Dirac distribution with the spectra as given in
Fig. 2. Only when neutrinos are still relativistic one finds an integrated effect
of the distortion. For instance, the contribution of relativistic relic neutrinos
to the total energy density is taken into account just by using Neff = 3.046.
But in general, for numerical calculations such as those done by the codes
CMBFAST [30] or CAMB [31], one must include the distortions as a function
of neutrino momenta. Our results for the case with flavour oscillations and
θ13 = 0 (the red lines in Fig. 2) are very well reproduced by the analytical fits

fνe
(y)= feq(y)

[

1 + 10−4
(

1 − 2.2 y + 4.1 y2 − 0.047 y3
)]

5 An analysis of neutrino heating in presence of non-standard neutrino interactions
is presently under study [29].
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fνµ,τ
(y)= feq(y)

[

1 + 10−4
(

−4 + 2.1 y + 2.4 y2 − 0.019 y3
)]

(11)

Note, however, that for any cosmological epoch when neutrino masses can
be relevant one must consider the neutrino mass eigenstates ν1,2,3. The corre-
sponding momentum distributions can be easily found from the flavour ones
through the relation

fνi
(y) =

∑

α=e,µ,τ

|Uαi|2fνα
(y) (12)

which, in the case with oscillations and θ13 = 0 gives the simple relations

fν1
(y)= 0.7fνe

(y) + 0.3fνx
(y)

fν2
(y)= 0.3fνe

(y) + 0.7fνx
(y)

fν3
(y)= fνx

(y) (13)

where we have used that fνx
= fνµ

= fντ
.

Finally, let us consider the contribution of massive neutrinos to the present
value of the energy density of the Universe. In general, this must be numerically
evaluated for any choice of neutrino masses (m1, m2, m3) using the distorted
distributions described above. However, in the particular case when neutrino
masses are almost degenerate it is easy to find, using the expressions in Eqs.
(11) or (13), that the contribution of neutrinos in units of the critical value of
the energy density is

Ων =
ρν

ρc
=

3m0

93.14 h2 eV
(14)

where h is the present value of the Hubble parameter in units of 100 km s−1

Mpc−1 and m0 is the neutrino mass scale. Here the number in the denominator
is slightly smaller than in the instantaneous decoupling limit (94.12).

3.3 Primordial Nucleosynthesis

Let us now discuss the effects of neutrino heating on BBN, and in particu-
lar on the production of primordial 4He. Neglecting neutrino oscillations, it
is well known that the non-thermal neutrino distortions change the predic-
tion of the primordial 4He mass fraction Yp by a small amount, of the order
[5,6,7,8,9,10,11]

∆Yp ≃ 1.5×10−4 . (15)
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One would then naively guess that neutrino oscillations, as a sub-leading mod-
ification, can only marginally change this effect. However, the small number in
Eq. (15) comes out from subtle cancellations of much larger effects, each one
responsible of changes in Yp of O(10−3) (see e.g. [5]). If neutrino oscillations
break these accidental cancellations, the effect could be comparable with that
of Eq. (15). Indeed, this seems to be suggested by the approximate analysis
performed in [19], where effects up to δYp ≈ (1.1−1.3)×10−4 were found (here
we use ∆Yp for the total change due to neutrino heating and δYp to the net

effect induced by neutrino oscillations).

In view of the results discussed in the previous sections, however, where ap-
preciable differences with respect to the picture presented in [19] are found,
the oscillation-induced δYp is likely to change. Before giving our numerical
results, we give a simple estimate of the expected effects. According to the
arguments of [5,7], in the approximation of thermal-equivalent distortions one
can perform a perturbative estimate of the effects of neutrino reheating on the
final neutron fraction Xn. In a framework where the scale factor R = T−1

ν0
is

kept fixed (i.e. unperturbed), one can identify three changes to Xn:

(1) a change in the weak rates due to the distortion to νe − ν̄e spectra, given by

δXν
n ≈ −0.1

δTνe

Tνe

≈ −0.1

4

δρνe

ρνe

; (16)

(2) since the energy must be conserved, the overall extra energy density δρν

is compensated by a decrease of the electromagnetic plasma contribution
δρe.m. = −δρν with respect to the instantaneous decoupling case. This
changes in turn the weak rates (where the e± distributions enter), finally
producing

δXe.m.
n ≈ −0.1

δTγ

Tγ
≈ +

0.1

4

δρν

ρν
; (17)

(3) given the high photon entropy, the BBN can start via the deuterium produc-
tion p+n → γ+d only when the universe has cooled down to a temperature
TBBN ≈ 0.07 MeV. At this point, the decay of free neutrons (practically the
only weak process since the n−p freezing at TF ≈ 0.7 MeV) stops and most
of the neutrons are eventually fixed into 4He nuclei. In formulae,

Xn(TBBN) = Xn(TF) e−(t(TBBN)−t(TF))/τn , (18)

where τn is the neutron lifetime. The neutrino reheating changes the time-
temperature relationship, thus the electromagnetic plasma reaches the value
TBBN at a different time given by [5]

δtBBN

tBBN

≈ −δρν

ρtot

≈ −1

2

δρν

ρν

. (19)
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From Eqs. (18) and (19) one easily derives the approximate result

δX t
n ∝ δρν

ρν
. (20)

Once using Yp ≈ 1.33Xn [5] and fixing the constant in Eq. (20) in order to
get the result given in [19] for the no-oscillation case (∆Yp = 1.2×10−4) one
can predict the value of δYp starting from δρνe

and δρν . This simple approach
gives δY osc

p ≈ 1.3×10−4 (and δY Max
p ≈ 1.6×10−4 for the maximal mixing case),

quite in nice agreement indeed with the numerical findings of [19] which are
respectively 1.1 and 1.3×10−4. This is obviously not unexpected, given the
thermal-equivalent approximation used.

When applied to our findings, the same formula, with the same normalization
to the data of [19], would predict changes of 0.66 and 0.76×10−4 for the θ13 = 0
and s2

13 = 0.047 cases, respectively. The main conclusion from this simple
argument is that the variation δYp induced by neutrino oscillations is likely to
be smaller than what found in [19].

To improve our previous estimates, we have modified the BBN code developed
in the past decade by the Naples group (see refs. [16,17]). Notice that z̄ ≡
me/Tγ = x/z is used there as independent variable. This implies that the
neutrino heating effects previously described have to be re-interpreted in such a
framework (see Appendix 3 of ref. [5] for an account of this issue). By definition
there is no perturbation to the e.m. fluid; instead, the neutrino fluid is not only
distorted by reheating, but also gets a correction from the modified relation
Tν − Tγ or equivalently R(z̄). Finally, at a fixed z̄, the Hubble function is
obviously altered by the extra energy density due to neutrino distortions, and
the time-temperature equation also gets a further correction piece which was
called N(z̄) in ref. [17]. Fixing as a background the spectra where reheating as
well as QED effects were taken into account, we calculated δYp as follows. Both
ρν(z̄), N(z̄), and the weak rates in the Born approximation were numerically
evaluated for the case under consideration and the background solution. The
differences between the two cases were treated as perturbations (keeping fixed
the z̄ of background) and then properly fitted. The use of the Born rates to
calculate these extra terms does not constitute a bad approximation, since
the effects we are dealing with are really tiny, and higher order corrections as
those coming from radiative processes can be safely neglected.

In Tables 1 and 2 we also include our results for the change in Yp. Our result
for the standard reheating effect, ∆Yp = 1.71×10−4, essentially agrees with
the evaluation ∆Yp ≃ 1.5×10−4 present in literature (see e.g. [7]), where the
slightly larger value arises from a larger Neff from QED corrections. In [7] it
was noted that the effect on Yp could be reproduced by an effective increase
∆NBBN in the number of neutrinos of about 0.01 (actually ≃ 0.013, for our
findings). Although academic on the light of present observational accuracies,
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Table 3
Comparison of the exact BBN results with the ∆NBBN approximation.

Nuclide Exact ∆NBBN = 0.013

∆Yp 1.71×10−4 1.76×10−4

∆(2H/H) −0.0068×10−5 +0.0044×10−5

∆(3He/H) −0.0011×10−5 +0.0007×10−5

∆(7Li/H) +0.0214×10−10 −0.0058×10−10

we warn the reader that this approximation only works for 4He. Indeed for
the other relevant nuclides it produces a change at the O(0.1%) level that is
exactly in the opposite direction of the true one, as shown in Table 3.

The effects of the oscillations on ∆Yp in Table 2 can be easily explained qualita-
tively. A decrease of δρνe

/ρν0
, which is the unavoidable consequence of neutrino

oscillations, leads to an increase in Yp (see Eq. (16)). On the other hand, a de-
crease of δρν/ρν0

causes a decrease of Yp (see Eq. (17)). This is in fact what we
find, so that the approximate cancellation of the effects (1) and (2) still holds,
differently than what described in [19], leaving a sub-leading contribution of
the order of few ×10−5 as the effect of neutrino oscillations on Yp. Modifying
the neutrino mixing parameters only leads to even smaller effects, since ∆Yp

changes from 2.07×10−4 (θ13 = 0) to 2.12×10−4 (s2
13 = 0.047). All the previous

results were obtained for a baryon fraction ωb = 0.023, in agreement with the
WMAP determination [32]. As already reported in [7], the effects show only a
weak dependency on the exact value of ωb, for a large interval of values of this
parameter. In particular, in the range ωb = 0.020 − 0.026 the changes in the
absolute values reported in Tables 1 and 2 are of O(1%), while the relative
values are practically unchanged.

In summary, we find that the global change ∆Yp ≃ 2.1×10−4 agrees with the
results in [19] because of the inclusion of QED effects, but the net effect due
to oscillations is about a factor 3 smaller than what previously estimated.
We think that the main reason of the discrepancy is due to the failure of the
momentum-averaged approximation to reproduce the true distortions.

4 Conclusions

In this paper we have performed a new analysis of the effect of flavour oscilla-
tions on the neutrino decoupling phase in the early Universe. By numerically
solving the relevant kinetic equations we have found the evolution of the distor-
tions on the energy distributions of neutrinos caused by residual interactions
with the electromagnetic plasma during the electron/positron annihilation
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phase.

The inclusion of neutrino oscillations modifies the evolution and final values
of the distortions in the flavour basis, reducing that of νe’s and enhancing
those of the other neutrino flavours. We have calculated the frozen values
of the neutrino distributions, that should be used in any numerical evalua-
tion of quantities related to relic neutrinos, like those done in codes such as
CMBFAST or CAMB. In particular, we find that that the asymptotic value
of the total neutrino energy density in presence of flavour oscillations is es-
sentially unchanged with respect to the unmixed case, being parametrized by
an effective number of neutrinos Neff = 3.046. In addition, we found the ef-
fect of neutrino heating on the products of BBN, which in the case of 4He is
approximately 20% larger when flavour oscillations are included.

Present bounds on the radiation content of the Universe from CMB and LSS
data, of the order Neff < 7 (95% CL), are still far from the effect caused
by neutrino heating. But a value of ∆Neff = 0.046 would be close to the
potential sensitivity of future CMB data from PLANCK, according to the
forecast analysis in ref. [35]. More recent analyses in refs. [36,37] show that
this conclusion was too optimistic, reducing the sensitivity to ∆Neff ∼ 0.2.

Finally, a few words on the detectability of the shift on BBN products caused
by neutrino heating. For Yp, the effect of the reheating is below the O(0.1%)
level, of which only about 0.02% are due to flavour oscillations. The theoret-
ical uncertainty is at least of 0.2%, while the observational error is likely to
be ≈ 5% and dominated by systematics, with statistical errors at least at the
1% level (see e.g. [17] and references therein). Obviously there is no hope to
appreciate such tiny effects: moreover, given the theoretical uncertainties, an
absolute prediction of the 4He yield at the 0.01% level would imply a significant
improvement in many sub-leading aspects of the BBN physics and numerics,
which is clearly unjustified given the existing much larger observational uncer-
tainties. The overall change due to the reheating in the other nuclides yields
is at most of O(0.1%), and the net effect due to oscillations practically negli-
gible. Once considered that the existing (theoretical as well as observational)
uncertainties are not better than O(10 − 20%) for the case of deuterium, one
has to conclude that definitively one cannot gain information on the standard

scenario of neutrino oscillations physics from BBN.
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