2,015 research outputs found

    Automated Pattern Detection and Generalization of Building Groups

    Get PDF
    This dissertation focuses on the topic of building group generalization by considering the detection of building patterns. Generalization is an important research field in cartography, which is part of map production and the basis for the derivation of multiple representation. As one of the most important features on map, buildings occupy large amount of map space and normally have complex shape and spatial distribution, which leads to that the generalization of buildings has long been an important and challenging task. For social, architectural and geographical reasons, the buildings were built with some special rules which forms different building patterns. Building patterns are crucial structures which should be carefully considered during graphical representation and generalization. Although people can effortlessly perceive these patterns, however, building patterns are not explicitly described in building datasets. Therefore, to better support the subsequent generalization process, it is important to automatically recognize building patterns. The objective of this dissertation is to develop effective methods to detect building patterns from building groups. Based on the identified patterns, some generalization methods are proposed to fulfill the task of building generalization. The main contribution of the dissertation is described as the following five aspects: (1) The terminology and concept of building pattern has been clearly explained; a detailed and relative complete typology of building patterns has been proposed by summarizing the previous researches as well as extending by the author; (2) A stroke-mesh based method has been developed to group buildings and detect different patterns from the building groups; (3) Through the analogy between line simplification and linear building group typification, a stroke simplification based typification method has been developed aiming at solving the generalization of building groups with linear patterns; (4) A mesh-based typification method has been developed for the generalization of the building groups with grid patterns; (5) A method of extracting hierarchical skeleton structures from discrete buildings have been proposed. The extracted hierarchical skeleton structures are regarded as the representations of the global shape of the entire region, which is used to control the generalization process. With the above methods, the building patterns are detected from the building groups and the generalization of building groups are executed based on the patterns. In addition, the thesis has also discussed the drawbacks of the methods and gave the potential solutions.:Abstract I Kurzfassung III Contents V List of Figures IX List of Tables XIII List of Abbreviations XIV Chapter 1 Introduction 1 1.1 Background and motivation 1 1.1.1 Cartographic generalization 1 1.1.2 Urban building and building patterns 1 1.1.3 Building generalization 3 1.1.4 Hierarchical property in geographical objects 3 1.2 Research objectives 4 1.3 Study area 5 1.4 Thesis structure 6 Chapter 2 State of the Art 8 2.1 Operators for building generalization 8 2.1.1 Selection 9 2.1.2 Aggregation 9 2.1.3 Simplification 10 2.1.4 Displacement 10 2.2 Researches of building grouping and pattern detection 11 2.2.1 Building grouping 11 2.2.2 Pattern detection 12 2.2.3 Problem analysis . 14 2.3 Researches of building typification 14 2.3.1 Global typification 15 2.3.2 Local typification 15 2.3.3 Comparison analysis 16 2.3.4 Problem analysis 17 2.4 Summary 17 Chapter 3 Using stroke and mesh to recognize building group patterns 18 3.1 Abstract 19 3.2 Introduction 19 3.3 Literature review 20 3.4 Building pattern typology and study area 22 3.4.1 Building pattern typology 22 3.4.2 Study area 24 3.5 Methodology 25 3.5.1 Generating and refining proximity graph 25 3.5.2 Generating stroke and mesh 29 3.5.3 Building pattern recognition 31 3.6 Experiments 33 3.6.1 Data derivation and test framework 33 3.6.2 Pattern recognition results 35 3.6.3 Evaluation 39 3.7 Discussion 40 3.7.1 Adaptation of parameters 40 3.7.2 Ambiguity of building patterns 44 3.7.3 Advantage and Limitation 45 3.8 Conclusion 46 Chapter 4 A typification method for linear building groups based on stroke simplification 47 4.1 Abstract 48 4.2 Introduction 48 4.3 Detection of linear building groups 50 4.3.1 Stroke-based detection method 50 4.3.2 Distinguishing collinear and curvilinear patterns 53 4.4 Typification method 55 4.4.1 Analogy of building typification and line simplification 55 4.4.2 Stroke generation 56 4.4.3 Stroke simplification 57 4.5 Representation of newly typified buildings 60 4.6 Experiment 63 4.6.1 Linear building group detection 63 4.6.2 Typification results 65 4.7 Discussion 66 4.7.1 Comparison of reallocating remained nodes 66 4.7.2 Comparison with classic line simplification method 67 4.7.3 Advantage 69 4.7.4 Further improvement 71 4.8 Conclusion 71 Chapter 5 A mesh-based typification method for building groups with grid patterns 73 5.1 Abstract 74 5.2 Introduction 74 5.3 Related work 75 5.4 Methodology of mesh-based typification 78 5.4.1 Grid pattern classification 78 5.4.2 Mesh generation 79 5.4.3 Triangular mesh elimination 80 5.4.4 Number and positioning of typified buildings 82 5.4.5 Representation of typified buildings 83 5.4.6 Resizing Newly Typified Buildings 85 5.5 Experiments 86 5.5.1 Data derivation 86 5.5.2 Typification results and evaluation 87 5.5.3 Comparison with official map 91 5.6 Discussion 92 5.6.1 Advantages 92 5.6.2 Further improvements 93 5.7 Conclusion 94 Chapter 6 Hierarchical extraction of skeleton structures from discrete buildings 95 6.1 Abstract 96 6.2 Introduction 96 6.3 Related work 97 6.4 Study area 99 6.5 Hierarchical extraction of skeleton structures 100 6.5.1 Proximity Graph Network (PGN) of buildings 100 6.5.2 Centrality analysis of proximity graph network 103 6.5.3 Hierarchical skeleton structures of buildings 108 6.6 Generalization application 111 6.7 Experiment and discussion 114 6.7.1 Data statement 114 6.7.2 Experimental results 115 6.7.3 Discussion 118 6.8 Conclusions 120 Chapter 7 Discussion 121 7.1 Revisiting the research problems 121 7.2 Evaluation of the presented methodology 123 7.2.1 Strengths 123 7.2.2 Limitations 125 Chapter 8 Conclusions 127 8.1 Main contributions 127 8.2 Outlook 128 8.3 Final thoughts 131 Bibliography 132 Acknowledgements 142 Publications 14

    Collaboration on an Ontology for Generalisation

    Get PDF
    workshopInternational audienceTo move beyond the current plateau in automated cartography we need greater sophistication in the process of selecting generalisation algorithms. This is particularly so in the context of machine comprehension. We also need to build on existing algorithm development instead of duplication. More broadly we need to model the geographical context that drives the selection, sequencing and degree of application of generalisation algorithms. We argue that a collaborative effort is required to create and share an ontology for cartographic generalisation focused on supporting the algorithm selection process. The benefits of developing a collective ontology will be the increased sharing of algorithms and support for on-demand mapping and generalisation web services

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    Design and development of a system for vario-scale maps

    Get PDF
    Nowadays, there are many geo-information data sources available such as maps on the Internet, in-car navigation devices and mobile apps. All datasets used in these applications are the same in principle, and face the same issues, namely: Maps of different scales are stored separately. With many separate fixed levels, a lot of information is the same, but still needs to be included, which leads to duplication. With many redundant data throughout the scales, features are represented again and again, which may lead to inconsistency. Currently available maps contain significantly more levels of detail (twenty map scales on average) than in the past. These levels must be created, but the optimal strategy to do so is not known. For every user’s data request, a significant part of the data remains the same, but still needs to be included. This leads to more data transfer, and slower response. The interactive Internet environment is not used to its full potential for user navigation. It is common to observe lagging, popping features or flickering of a newly retrieved map scale feature while using the map. This research develops principles of variable scale (vario-scale) maps to address these issues. The vario-scale approach is an alternative for obtaining and maintaining geographical data sets at different map scales. It is based on the specific topological structure called tGAP (topological Generalized Area Partitioning) which addresses the main open issues of current solutions for managing spatial data sets of different scales such as: redundancy data, inconsistency of map scales and dynamic transfer. The objective of this thesis is to design, to develop and to extend the variable-scale data structures and it is expressed as the following research question: How to design and develop a system for vario-scale maps? To address the above research question, this research has been conducted using the following outline:  To address the above research question, this research has been conducted using the following outline: 1) Investigate state-of-the-art in map generalization. 2) Study development of vario-scale structure done so far. 3) Propose techniques for generating better vario-scale map content. 4) Implement strategies to process really massive datasets. 5) Research smooth representation of map features and their impact on user interaction. Results of our research led to new functionality, were addressed in prototype developments and were tested against real world data sets. Throughout this research we have made following main contributions to the design and development of a system of vario-scale maps. We have: studied vario-scale development in the past and we have identified the most urgent needs of the research. designed the concept of granularity and presented our strategy where changes in map content should be as small and as gradual as possible (e. g. use groups, maintain road network, support line feature representation). introduced line features in the solution and presented a fully-automated generalization process that preserves a road network features throughout all scales. proposed an approach to create a vario-scale data structure of massive datasets. demonstrated a method to generate an explicit 3D representation from the structure which can provide smoother user experience. developed a software prototype where a 3D vario-scale dataset can be used to its full potential. conducted initial usability test. All aspects together with already developed functionality provide a more complex and more unified solution for vario-scale mapping. Based on our research, design and development of a system for vario-scale maps should be clearer now. In addition, it is easier to identified necessary steps which need to be taken towards an optimal solution. Our recommendations for future work are: One of the contributions has been an integration of the road features in the structure and their automated generalization throughout the process. Integrating more map features besides roads deserve attention. We have investigated how to deal with massive datasets which do not fit in the main memory of the computer. Our experiences consisted of dataset of one province or state with records in order of millions. To verify our findings, it will be interesting to process even bigger dataset with records in order of billions (a whole continent). We have introduced representation where map content changes as gradually as possible. It is based on process where: 1) explicit 3D geometry from the structure is generated. 2) A slice of the geometry is calculated. 3) Final maps based on the slice is constructed. Investigation of how to integrate this in a server-client pipeline on the Internet is another point of further research. Our research focus has been mainly on one specific aspect of the concept at a time. Now all aspects may be brought together where integration, tuning and orchestration play an important role is another interesting research that desire attention. Carry out more user testing including; 1) maps of sufficient cartographic quality, 2) a large testing region, and 3) the finest version of visualization prototype

    Design and development of a system for vario-scale maps

    Get PDF
    Nowadays, there are many geo-information data sources available such as maps on the Internet, in-car navigation devices and mobile apps. All datasets used in these applications are the same in principle, and face the same issues, namely: Maps of different scales are stored separately. With many separate fixed levels, a lot of information is the same, but still needs to be included, which leads to duplication. With many redundant data throughout the scales, features are represented again and again, which may lead to inconsistency. Currently available maps contain significantly more levels of detail (twenty map scales on average) than in the past. These levels must be created, but the optimal strategy to do so is not known. For every user’s data request, a significant part of the data remains the same, but still needs to be included. This leads to more data transfer, and slower response. The interactive Internet environment is not used to its full potential for user navigation. It is common to observe lagging, popping features or flickering of a newly retrieved map scale feature while using the map. This research develops principles of variable scale (vario-scale) maps to address these issues. The vario-scale approach is an alternative for obtaining and maintaining geographical data sets at different map scales. It is based on the specific topological structure called tGAP (topological Generalized Area Partitioning) which addresses the main open issues of current solutions for managing spatial data sets of different scales such as: redundancy data, inconsistency of map scales and dynamic transfer. The objective of this thesis is to design, to develop and to extend the variable-scale data structures and it is expressed as the following research question: How to design and develop a system for vario-scale maps?  To address the above research question, this research has been conducted using the following outline: 1) Investigate state-of-the-art in map generalization. 2) Study development of vario-scale structure done so far. 3) Propose techniques for generating better vario-scale map content. 4) Implement strategies to process really massive datasets. 5) Research smooth representation of map features and their impact on user interaction. Results of our research led to new functionality, were addressed in prototype developments and were tested against real world data sets. Throughout this research we have made following main contributions to the design and development of a system of vario-scale maps. We have: studied vario-scale development in the past and we have identified the most urgent needs of the research. designed the concept of granularity and presented our strategy where changes in map content should be as small and as gradual as possible (e. g. use groups, maintain road network, support line feature representation). introduced line features in the solution and presented a fully-automated generalization process that preserves a road network features throughout all scales. proposed an approach to create a vario-scale data structure of massive datasets. demonstrated a method to generate an explicit 3D representation from the structure which can provide smoother user experience. developed a software prototype where a 3D vario-scale dataset can be used to its full potential. conducted initial usability test. All aspects together with already developed functionality provide a more complex and more unified solution for vario-scale mapping. Based on our research, design and development of a system for vario-scale maps should be clearer now. In addition, it is easier to identified necessary steps which need to be taken towards an optimal solution. Our recommendations for future work are: One of the contributions has been an integration of the road features in the structure and their automated generalization throughout the process. Integrating more map features besides roads deserve attention. We have investigated how to deal with massive datasets which do not fit in the main memory of the computer. Our experiences consisted of dataset of one province or state with records in order of millions. To verify our findings, it will be interesting to process even bigger dataset with records in order of billions (a whole continent). We have introduced representation where map content changes as gradually as possible. It is based on process where: 1) explicit 3D geometry from the structure is generated. 2) A slice of the geometry is calculated. 3) Final maps based on the slice is constructed. Investigation of how to integrate this in a server-client pipeline on the Internet is another point of further research. Our research focus has been mainly on one specific aspect of the concept at a time. Now all aspects may be brought together where integration, tuning and orchestration play an important role is another interesting research that desire attention. Carry out more user testing including; 1) maps of sufficient cartographic quality, 2) a large testing region, and 3) the finest version of visualization prototype. &nbsp

    Data integration for urban transport planning

    Get PDF
    Urban transport planning aims at balancing conflicting challenges by promoting more efficient transport systems while reducing negative impacts. The availability of better and more reliable data has not only stimulated new planning methodologies, but also created challenges for efficient data management and data integration. The major focus of this study is to improve methodologies for representing and integrating multi-source and multi-format urban transport data. This research approaches the issue of data integration based on the classification of urban transport data both from a functional and a representational perspective. The functional perspective considers characteristics of the urban transport system and planning requirements, and categorises data into supply, demand, performance and impact. The representational perspective considers transport data in terms of their spatial and non-spatial characteristics that are important for data representation. These two perspectives correspond to institutional and methodological data integration respectively, and are the foundation of transport data integration. This research is based on the city of Wuhan in China. The methodological issues of transport data integration are based on the representational perspective. A framework for data integration has been put forward, in which spatial data are classified as point, linear and areal types, and the non-spatial data are sorted out as values and temporal attributes. This research has respectively probed the integration of point, linear and areal transport data within a GIS environment. The locations of socio-economic activities are point-type data that need to be spatially referenced. A location referencing process requires a referencing base, source address units and referencing methods. The referencing base consists of such spatial features as streets, street addresses, points of interest and publicly known zones. These referencing bases have different levels of spatial preciseness and have to be kept in a hierarchy. Source addresses in Chinese cities are usually written as one sentence, which has to be divided into address units for automatic geo-coding. As it is difficult to separate from the sentences, the address units have to be clearly identified in survey forms. Depending on the types of address units, the referencing process makes use of either semantic name matching or address matching to link source addresses to features in the referencing base. The name-based and road-based referencing schemes constitute a comprehensive location referencing framework that is applicable to Chinese cities. The relationship between two sets of linear features can be identified with spatial overlay in the case of independent representation, or with internal linkage in a dependent representation. The bus line is such a feature that runs on the street network and can be dependently referenced by streets. In the heavily bus-oriented city of Wuhan, bus lines constitute a large public transit network that is important to transport planning and management. This research has extended conventional bus line representation to a more detailed level. Each bus line has been differentiated as two directional routes that are defined separately with reference to the street network. Accordingly, individual route stops are also represented in the database. These stop sites are spatial features with geometry that are linked to street segments and bus routes by linear location referencing methods. A data model linking base street network, bus lines and routes, line and route stops, and other bus operations data has been constructed. The benefits of the detailed model have been demonstrated in several transport applications. Zonal data transitions include three types of operations, i.e. aggregation, areal interpolation and disaggregation. This study focuses on disaggregating data from larger zones to smaller zones. In the context of Wuhan, zonal data disaggregation involves the allocation of statistical data from statistical units to smaller parcels. Given the availability of land use data, a weighted approach reflecting spatial variations has been applied in the disaggregation process. Two technical processes for disaggregation have been examined. Weighted area-weighting (WAW) is an adaptation of the classic area-weighting method, and Monte Carlo simulation (MC) is a stochastic process based on a raster data model. The MC outcome is more convenient for subsequent re-aggregation, and is also directly available for micro-simulation. An important contribution arising from this zonal integration study is that two standardised disaggregation tools have been developed within a GIS environment. The research has also explored the institutional aspect of data integration. The findings of this study show that there is generally a good institutional transport structure in the city of Wuhan and that there is also a growing awareness of using information technology. Professional cooperation exists among transport organisations, but not yet at a level for data sharing. An integrated data support framework requires data sharing. In such a framework, it should be possible to know where to get data for specific transport studies, or which kind of research an institution supports

    Regular Hierarchical Surface Models: A conceptual model of scale variation in a GIS and its application to hydrological geomorphometry

    Get PDF
    Environmental and geographical process models inevitably involve parameters that vary spatially. One example is hydrological modelling, where parameters derived from the shape of the ground such as flow direction and flow accumulation are used to describe the spatial complexity of drainage networks. One way of handling such parameters is by using a Digital Elevation Model (DEM), such modelling is the basis of the science of geomorphometry. A frequently ignored but inescapable challenge when modellers work with DEMs is the effect of scale and geometry on the model outputs. Many parameters vary with scale as much as they vary with position. Modelling variability with scale is necessary to simplify and generalise surfaces, and desirable to accurately reconcile model components that are measured at different scales. This thesis develops a surface model that is optimised to represent scale in environmental models. A Regular Hierarchical Surface Model (RHSM) is developed that employs a regular tessellation of space and scale that forms a self-similar regular hierarchy, and incorporates Level Of Detail (LOD) ideas from computer graphics. Following convention from systems science, the proposed model is described in its conceptual, mathematical, and computational forms. The RHSM development was informed by a categorisation of Geographical Information Science (GISc) surfaces within a cohesive framework of geometry, structure, interpolation, and data model. The positioning of the RHSM within this broader framework made it easier to adapt algorithms designed for other surface models to conform to the new model. The RHSM has an implicit data model that utilises a variation of Middleton and Sivaswamy (2001)’s intrinsically hierarchical Hexagonal Image Processing referencing system, which is here generalised for rectangular and triangular geometries. The RHSM provides a simple framework to form a pyramid of coarser values in a process characterised as a scaling function. In addition, variable density realisations of the hierarchical representation can be generated by defining an error value and decision rule to select the coarsest appropriate scale for a given region to satisfy the modeller’s intentions. The RHSM is assessed using adaptions of the geomorphometric algorithms flow direction and flow accumulation. The effects of scale and geometry on the anistropy and accuracy of model results are analysed on dispersive and concentrative cones, and Light Detection And Ranging (LiDAR) derived surfaces of the urban area of Dunedin, New Zealand. The RHSM modelling process revealed aspects of the algorithms not obvious within a single geometry, such as, the influence of node geometry on flow direction results, and a conceptual weakness of flow accumulation algorithms on dispersive surfaces that causes asymmetrical results. In addition, comparison of algorithm behaviour between geometries undermined the hypothesis that variance of cell cross section with direction is important for conversion of cell accumulations to point values. The ability to analyse algorithms for scale and geometry and adapt algorithms within a cohesive conceptual framework offers deeper insight into algorithm behaviour than previously achieved. The deconstruction of algorithms into geometry neutral forms and the application of scaling functions are important contributions to the understanding of spatial parameters within GISc

    Network Centralities in Polycentric Urban Regions: Methods for the Measurement of Spatial Metrics

    Get PDF
    The primary aim of this thesis is to explain the complex spatial organisations of polycentric urban regions (PURs). PURs are a form of regional morphology that often evolves from post-industrial structures and describe a subnational area featuring a plurality of urban centres. As of today, the analysis of the spatial organisation of PURs constitutes a hitherto uncharted territory. This is due to PURs’ inherent complexity that poses challenges for their conceptualisation. In this context, this thesis reviews theories on the spatial organisation of regions and cities and seeks to make a foundational methodological contribution by joining space syntax and central place theory in the conceptualisation of polycentric urban regions. It takes into account human agency embedded in the physical space, as well as the reciprocal effect of the spatial organisation for the emergence of centralities and demonstrates how these concepts can give insights into the fundamental regional functioning. The thesis scrutinises the role that the spatial organisation plays in such regions, in terms of organising flows of goods and people, ordering locational occupation and fostering centres of commercial activity. It proposes a series of novel measurements and techniques to analyse large and messy datasets. This includes a method for the application of large-scale volunteered geographic information in street network analysis. This is done, in the context of two post-industrial regions: the German Ruhr Valley and the British Nottinghamshire, Derbyshire and Yorkshire region. The thesis’ contribution to the understanding of regional spatial organisation and the study of regional morphology lies in the identification of spatial structural features of socio-economic potentials of regions and particular areas within them. It constitutes the first comparative study of comprehensive large-scale regional spatial networks and presents a framework for the analysis of regions and the evaluation of the predictive potential of spatial networks for socio-economic patterns and the location of centres in regional contexts
    • …
    corecore