48,058 research outputs found

    The design co-ordination framework : key elements for effective product development

    Get PDF
    This paper proposes a Design Co-ordination Framework (DCF) i.e. a concept for an ideal DC system with the abilities to support co-ordination of various complex aspects of product development. A set of frames, modelling key elements of co-ordination, which reflect the states of design, plans, organisation, allocations, tasks etc. during the design process, has been identified. Each frame is explained and the co-ordination, i.e. the management of the links between these frames, is presented, based upon characteristic DC situations in industry. It is concluded that while the DCF provides a basis for our research efforts into enhancing the product development process there is still considerable work and development required before it can adequately reflect and support Design Co-ordination

    Supporting reinterpretation in computer-aided conceptual design

    Get PDF
    This paper presents research that aims to inform the development of computational tools that better support design exploration and idea transformation - key objectives in conceptual design. Analyses of experimental data from two fields - product design and architecture - suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules defined within a shape grammar. Such rules can provide a basis for the generation of alternative design concepts and they have informed the development of a prototype shape synthesis system that supports dynamic reinterpretation of shapes in design activity. The notion of 'sub-shapes' is introduced and the significance of these to perception, recognition and the development of emergent structures is discussed. The paper concludes with some speculation on how such a system might find application in a range of design fields

    Design synthesis and shape generation

    Get PDF
    If we are to capitalise on the potential that a design approach might bring to innovation in business and society, we need to build a better understanding of the evolving skill-sets that designers will need and the contexts within which design might operate. This demands more discourse between those involved in cutting edge practice, the researchers who help to uncover principles, codify knowledge and create theories and the educators who are nurturing future design talent. This book promotes such a discourse by reporting on the work of twenty research teams who explored different facets of future design activity as part of Phase 2 of the UK's research council supported Designing for the 21st Century Research Initiative. Each of these contributions describes the origins of the project, the research team and their project aims, the research methods used and the new knowledge and understanding generated. Editor and Initiative Director, Professor Tom Inns, provides an introductory chapter that suggests ways the reader might navigate these viewpoints. This chapter concludes with an overview of the key lessons that might be learnt from this collection of design research activity

    Computer-Aided Conceptual Design Through TRIZ-based Manipulation of Topological Optimizations

    Get PDF
    Organised by: Cranfield UniversityIn a recent project the authors proposed the adoption of Optimization Systems [1] as a bridging element between Computer-Aided Innovation (CAI) and PLM to identify geometrical contradictions [2], a particular case of the TRIZ physical contradiction [3]. A further development of the research has revealed that the solutions obtained from several topological optimizations can be considered as elementary customized modeling features for a specific design task. The topology overcoming the arising geometrical contradiction can be obtained through a manipulation of the density distributions constituting the conflicting pair. Already two strategies of density combination have been identified as capable to solve geometrical contradictions.Mori Seiki – The Machine Tool Compan

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    A metric to represent the evolution of CAD/analysis models in collaborative design

    Get PDF
    Computer Aided Design (CAD) and Computer Aided Engineering (CAE) models are often used during product design. Various interactions between the different models must be managed for the designed system to be robust and in accordance with initially defined specifications. Research published to date has for example considered the link between digital mock-up and analysis models. However design/analysis integration must take into consideration the important number of models (digital mock-up and simulation) due to model evolution in time, as well as considering system engineering. To effectively manage modifications made to the system, the dependencies between the different models must be known and the nature of the modification must be characterised to estimate the impact of the modification throughout the dependent models. We propose a technique to describe the nature of a modification which may be used to determine the consequence within other models as well as a way to qualify the modified information. To achieve this, a metric is proposed that allows the qualification and evaluation of data or information, based on the maturity and validity of information and model

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF

    An assembly oriented design framework for product structure engineering and assembly sequence planning

    Get PDF
    The paper describes a novel framework for an assembly-oriented design (AOD) approach as a new functional product lifecycle management (PLM) strategy, by considering product design and assembly sequence planning phases concurrently. Integration issues of product life cycle into the product development process have received much attention over the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an assembly context knowledge to support life-oriented product development process, particularly for product structuring. The proposed framework highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a catalytic-converter and diesel particulate filter sub-system, belonging to an exhaust system from an industrial automotive supplier, is introduced to illustrate the efficiency of the proposed AOD methodology
    corecore