823 research outputs found

    DARE: A Reflective Platform Designed to Enable Agile Data-Driven Research on the Cloud

    Get PDF
    The DARE platform has been designed to help research developers deliver user-facing applications and solutions over diverse underlying e-infrastructures, data and computational contexts. The platform is Cloud-ready, and relies on the exposure of APIs, which are suitable for raising the abstraction level and hiding complexity. At its core, the platform implements the cataloguing and execution of fine-grained and Python-based dispel4py workflows as services. Reflection is achieved via a logical knowledge base, comprising multiple internal catalogues, registries and semantics, while it supports persistent and pervasive data provenance. This paper presents design and implementation aspects of the DARE platform, as well as it provides directions for future development.PublishedSan Diego (CA, USA)3IT. Calcolo scientific

    DARE: A Reflective Platform Designed to Enable Agile Data-Driven Research on the Cloud

    Get PDF
    The DARE platform has been designed to help research developers deliver user-facing applications and solutions over diverse underlying e-infrastructures, data and computational contexts. The platform is Cloud-ready, and relies on the exposure of APIs, which are suitable for raising the abstraction level and hiding complexity. At its core, the platform implements the cataloguing and execution of fine-grained and Python-based dispel4py workflows as services. Reflection is achieved via a logical knowledge base, comprising multiple internal catalogues, registries and semantics, while it supports persistent and pervasive data provenance. This paper presents design and implementation aspects of the DARE platform, as well as it provides directions for future development.PublishedSan Diego (CA, USA)3IT. Calcolo scientific

    Towards a unified methodology for supporting the integration of data sources for use in web applications

    Get PDF
    Organisations are making increasing use of web applications and web-based systems as an integral part of providing services. Examples include personalised dynamic user content on a website, social media plug-ins or web-based mapping tools. For these types of applications to have maximum use for the user where the applications are fully functional, they require the integration of data from multiple sources. The focus of this thesis is in improving this integration process with a focus on web applications with multiple sources of data. Integration of data from multiple sources is problematic for many reasons. Current integration methods tend to be domain specific and application specific. They are often complex, have compatibility issues with different technologies, lack maturity, are difficult to re-use, and do not accommodate new and emerging models and integration technologies. Technologies to achieve integration, such as brokers and translators do exist, but they cannot be used as a generic solution for developing web-applications achieving the integration outcomes required for successful web application development due to their domain specificity. It is because of these difficulties with integration, and the wide variety of integration approaches that there is a need to provide assistance to the developer in selecting the integration approach most appropriate to their needs. This thesis proposes GIWeb, a unified top-down data integration methodology instantiated with a framework that will aid developers in their integration process. It will act as a conceptual structure to support the chosen technical approach. The framework will assist in the integration of data sources to support web application builders. The thesis presents the rationale for the need for the framework based on an examination of the range of applications, associated data sources and the range of potential solutions. The framework is evaluated using four case studies

    Creating a reusable cross-disciplinary multi-scale and multi-physics framework: From AMUSE to OMUSE and beyond

    Get PDF
    Here, we describe our efforts to create a multi-scale and multi-physics framework that can be retargeted across different disciplines. Currently we have implemented our approach in the astrophysical domain, for which we developed AMUSE (github.com/amusecode/amuse ), and generalized this to the oceanographic and climate sciences, which led to the development of OMUSE (bitbucket.org/omuse ). The objective of this paper is to document the design choices that led to the successful implementation of these frameworks as well as the future challenges in applying this approach to other domains

    Integration operators for generating RDF/OWL-based user defined mediator views in a grid environment

    Get PDF
    Research and development activities relating to the grid have generally focused on applications where data is stored in files. However, many scientific and commercial applications are highly dependent on Information Servers (ISs) for storage and organization of their data. A data-information system that supports operations on multiple information servers in a grid environment is referred to as an interoperable grid system. Different perceptions by end-users of interoperable systems in a grid environment may lead to different reasons for integrating data. Even the same user might want to integrate the same distributed data in various ways to suit different needs, roles or tasks. Therefore multiple mediator views are needed to support this diversity. This paper describes our approach to supporting semantic interoperability in a heterogeneous multi-information server grid environment. It is based on using Integration Operators for generating multiple semantically rich RDF/OWL-based user defined mediator views above the grid participating ISs. These views support different perceptions of the distributed and heterogeneous data available. A set of grid services are developed for the implementation of the mediator views
    corecore