50 research outputs found

    MONROE-Nettest: A Configurable Tool for Dissecting Speed Measurements in Mobile Broadband Networks

    Full text link
    As the demand for mobile connectivity continues to grow, there is a strong need to evaluate the performance of Mobile Broadband (MBB) networks. In the last years, mobile "speed", quantified most commonly by data rate, gained popularity as the widely accepted metric to describe their performance. However, there is a lack of consensus on how mobile speed should be measured. In this paper, we design and implement MONROE-Nettest to dissect mobile speed measurements, and investigate the effect of different factors on speed measurements in the complex mobile ecosystem. MONROE-Nettest is built as an Experiment as a Service (EaaS) on top of the MONROE platform, an open dedicated platform for experimentation in operational MBB networks. Using MONROE-Nettest, we conduct a large scale measurement campaign and quantify the effects of measurement duration, number of TCP flows, and server location on measured downlink data rate in 6 operational MBB networks in Europe. Our results indicate that differences in parameter configuration can significantly affect the measurement results. We provide the complete MONROE-Nettest toolset as open source and our measurements as open data.Comment: 6 pages, 3 figures, submitted to INFOCOM CNERT Workshop 201

    Architectures for the Future Networks and the Next Generation Internet: A Survey

    Get PDF
    Networking research funding agencies in the USA, Europe, Japan, and other countries are encouraging research on revolutionary networking architectures that may or may not be bound by the restrictions of the current TCP/IP based Internet. We present a comprehensive survey of such research projects and activities. The topics covered include various testbeds for experimentations for new architectures, new security mechanisms, content delivery mechanisms, management and control frameworks, service architectures, and routing mechanisms. Delay/Disruption tolerant networks, which allow communications even when complete end-to-end path is not available, are also discussed

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Survey of End-to-End Mobile Network Measurement Testbeds, Tools, and Services

    Full text link
    Mobile (cellular) networks enable innovation, but can also stifle it and lead to user frustration when network performance falls below expectations. As mobile networks become the predominant method of Internet access, developer, research, network operator, and regulatory communities have taken an increased interest in measuring end-to-end mobile network performance to, among other goals, minimize negative impact on application responsiveness. In this survey we examine current approaches to end-to-end mobile network performance measurement, diagnosis, and application prototyping. We compare available tools and their shortcomings with respect to the needs of researchers, developers, regulators, and the public. We intend for this survey to provide a comprehensive view of currently active efforts and some auspicious directions for future work in mobile network measurement and mobile application performance evaluation.Comment: Submitted to IEEE Communications Surveys and Tutorials. arXiv does not format the URL references correctly. For a correctly formatted version of this paper go to http://www.cs.montana.edu/mwittie/publications/Goel14Survey.pd

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Informing protocol design through crowdsourcing measurements

    Get PDF
    Mención Internacional en el título de doctorMiddleboxes, such as proxies, firewalls and NATs play an important role in the modern Internet ecosystem. On one hand, they perform advanced functions, e.g. traffic shaping, security or enhancing application performance. On the other hand, they turn the Internet into a hostile ecosystem for innovation, as they limit the deviation from deployed protocols. It is therefore essential, when designing a new protocol, to first understand its interaction with the elements of the path. The emerging area of crowdsourcing solutions can help to shed light on this issue. Such approach allows us to reach large and different sets of users and also different types of devices and networks to perform Internet measurements. In this thesis, we show how to make informed protocol design choices by expanding the traditional crowdsourcing focus from the human element and using crowdsourcing large scale measurement platforms. We consider specific use cases, namely the case of pervasive encryption in the modern Internet, TCP Fast Open and ECN++. We consider such use cases to advance the global understanding on whether wide adoption of encryption is possible in today’s Internet or the adoption of encryption is necessary to guarantee the proper functioning of HTTP/2. We target ECN and particularly ECN++, given its succession of deployment problems. We then measured ECN deployment over mobile as well as fixed networks. In the process, we discovered some bad news for the base ECN protocol—more than half the mobile carriers we tested wipe the ECN field at the first upstream hop. This thesis also reports the good news that, wherever ECN gets through, we found no deployment problems for the ECN++ enhancement. The thesis includes the results of other more in-depth tests to check whether servers that claim to support ECN, actually respond correctly to explicit congestion feedback, including some surprising congestion behaviour unrelated to ECN. This thesis also explores the possible causes that ossify the modern Internet and make difficult the advancement of the innovation. Network Address Translators (NATs) are a commonplace in the Internet nowadays. It is fair to say that most of the residential and mobile users are connected to the Internet through one or more NATs. As any other technology, NAT presents upsides and downsides. Probably the most acknowledged downside of the NAT technology is that it introduces additional difficulties for some applications such as peer-to-peer applications, gaming and others to function properly. This is partially due to the nature of the NAT technology but also due to the diversity of behaviors of the different NAT implementations deployed in the Internet. Understanding the properties of the currently deployed NAT base provides useful input for application and protocol developers regarding what to expect when deploying new application in the Internet. We develop NATwatcher, a tool to test NAT boxes using a crowdsourcingbased measurement methodology. We also perform large scale active measurement campaigns to detect CGNs in fixed broadband networks using NAT Revelio, a tool we have developed and validated. Revelio enables us to actively determine from within residential networks the type of upstream network address translation, namely NAT at the home gateway (customer-grade NAT) or NAT in the ISP (Carrier Grade NAT). We deploy Revelio in the FCC Measuring Broadband America testbed operated by SamKnows and also in the RIPE Atlas testbed. A part of this thesis focuses on characterizing CGNs in Mobile Network Operators (MNOs). We develop a measuring tool, called CGNWatcher that executes a number of active tests to fully characterize CGN deployments in MNOs. The CGNWatcher tool systematically tests more than 30 behavioural requirements of NATs defined by the Internet Engineering Task Force (IETF) and also multiple CGN behavioural metrics. We deploy CGNWatcher in MONROE and performed large measurement campaigns to characterize the real CGN deployments of the MNOs serving the MONROE nodes. We perform a large measurement campaign using the tools described above, recruiting over 6,000 users, from 65 different countries and over 280 ISPs. We validate our results with the ISPs at the IP level and, reported to the ground truth we collected. To the best of our knowledge, this represents the largest active measurement study of (confirmed) NAT or CGN deployments at the IP level in fixed and mobile networks to date. As part of the thesis, we characterize roaming across Europe. The goal of the experiment was to try to understand if the MNO changes CGN while roaming, for this reason, we run a series of measurements that enable us to identify the roaming setup, infer the network configuration for the 16 MNOs that we measure and quantify the end-user performance for the roaming configurations which we detect. We build a unique roaming measurement platform deployed in six countries across Europe. Using this platform, we measure different aspects of international roaming in 3G and 4G networks, including mobile network configuration, performance characteristics, and content discrimination. We find that operators adopt common approaches to implementing roaming, resulting in additional latency penalties of 60 ms or more, depending on geographical distance. Considering content accessibility, roaming poses additional constraints that leads to only minimal deviations when accessing content in the original country. However, geographical restrictions in the visited country make the picture more complicated and less intuitive. Results included in this thesis would provide useful input for application, protocol designers, ISPs and researchers that aim to make their applications and protocols to work across the modern Internet.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Gonzalo Camarillo González.- Secretario: María Carmen Guerrero López.- Vocal: Andrés García Saavedr
    corecore