75,559 research outputs found

    Towards Semantic Integration of Heterogeneous Sensor Data with Indigenous Knowledge for Drought Forecasting

    Full text link
    In the Internet of Things (IoT) domain, various heterogeneous ubiquitous devices would be able to connect and communicate with each other seamlessly, irrespective of the domain. Semantic representation of data through detailed standardized annotation has shown to improve the integration of the interconnected heterogeneous devices. However, the semantic representation of these heterogeneous data sources for environmental monitoring systems is not yet well supported. To achieve the maximum benefits of IoT for drought forecasting, a dedicated semantic middleware solution is required. This research proposes a middleware that semantically represents and integrates heterogeneous data sources with indigenous knowledge based on a unified ontology for an accurate IoT-based drought early warning system (DEWS).Comment: 5 pages, 3 figures, In Proceedings of the Doctoral Symposium of the 16th International Middleware Conference (Middleware Doct Symposium 2015), Ivan Beschastnikh and Wouter Joosen (Eds.). ACM, New York, NY, US

    Ontological Foundations for Geographic Information Science

    Get PDF
    We propose as a UCGIS research priority the topic of “Ontological Foundations for Geographic Information.” Under this umbrella we unify several interrelated research subfields, each of which deals with different perspectives on geospatial ontologies and their roles in geographic information science. While each of these subfields could be addressed separately, we believe it is important to address ontological research in a unitary, systematic fashion, embracing conceptual issues concerning what would be required to establish an exhaustive ontology of the geospatial domain, issues relating to the choice of appropriate methods for formalizing ontologies, and considerations regarding the design of ontology-driven information systems. This integrated approach is necessary, because there is a strong dependency between the methods used to specify an ontology, and the conceptual richness, robustness and tractability of the ontology itself. Likewise, information system implementations are needed as testbeds of the usefulness of every aspect of an exhaustive ontology of the geospatial domain. None of the current UCGIS research priorities provides such an integrative perspective, and therefore the topic of “Ontological Foundations for Geographic Information Science” is unique

    The DIGMAP geo-temporal web gazetteer service

    Get PDF
    This paper presents the DIGMAP geo-temporal Web gazetteer service, a system providing access to names of places, historical periods, and associated geo-temporal information. Within the DIGMAP project, this gazetteer serves as the unified repository of geographic and temporal information, assisting in the recognition and disambiguation of geo-temporal expressions over text, as well as in resource searching and indexing. We describe the data integration methodology, the handling of temporal information and some of the applications that use the gazetteer. Initial evaluation results show that the proposed system can adequately support several tasks related to geo-temporal information extraction and retrieval

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Extending the design process into the knowledge of the world

    Get PDF
    Research initiatives throughout history have shown how a designer typically makes associations and references to a vast amount of knowledge based on experiences to make decisions. With the increasing usage of information systems in our everyday lives, one might imagine an information system that provides designers access to the ‘architectural memories’ of other architectural designers during the design process, in addition to their own physical architectural memory. In this paper, we discuss how the increased adoption of semantic web technologies might advance this idea. We briefly discuss how such a semantic web of building information can be set up, and how this can be linked to a wealth of information freely available in the Linked Open Data (LOD) cloud

    Analysing imperfect temporal information in GIS using the Triangular Model

    Get PDF
    Rough set and fuzzy set are two frequently used approaches for modelling and reasoning about imperfect time intervals. In this paper, we focus on imperfect time intervals that can be modelled by rough sets and use an innovative graphic model [i.e. the triangular model (TM)] to represent this kind of imperfect time intervals. This work shows that TM is potentially advantageous in visualizing and querying imperfect time intervals, and its analytical power can be better exploited when it is implemented in a computer application with graphical user interfaces and interactive functions. Moreover, a probabilistic framework is proposed to handle the uncertainty issues in temporal queries. We use a case study to illustrate how the unique insights gained by TM can assist a geographical information system for exploratory spatio-temporal analysis
    corecore