13,470 research outputs found

    Integrating Closed-loop Supply Chains and Spare Parts Management at IBM

    Get PDF
    Ever more companies are recognizing the benefits of closed-loop supplychains that integrate product returns into business operations. IBMhas been among the pioneers seeking to unlock the value dormant inthese resources. We report on a project exploiting product returns asa source of spare parts. Key decisions include the choice of recoveryopportunities to use, the channel design, and the coordination ofalternative supply sources. We developed an analytic inventory controlmodel and a simulation model to address these issues. Our results showthat procurement cost savings largely outweigh reverse logistics costsand that information management is key to an efficient solution. Ourrecommendations provide a basis for significantly expanding the usageof the novel parts supply source, which allows for cutting procurementcosts.supply chain management;reverse logistics;product recovery;inventory management;service management

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies.We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future.closed-loop supply chains;Production planning and control

    Navigating Complexities In Closed-Loop Supply Chains: A Review Of Objectives, Uncertainties And Decision Variables

    Get PDF
    The investigation of closed-loop supply chains (CLSC) and the principle of the circular economy becomes imperative in order to reduce the environmental impact associated with product development. This paper aims to conduct a literature review to explore and categorise the main content areas that are essential to the understanding of this research field and accordingly application of Closed-Loop Supply Chains (CLSC) and the circular economy. To this end, this study focuses on identifying and analysing the forming factors in this context including the decision variables, measures of effectives, inherent uncertainties, and limitations associated with CLSC concepts. A significant contribution of this review lies in its detailed exploration of uncertainties associated with CLSC, highlighting their profound impact on achieving circular economy (CE) objective. Through a comprehensive analysis of existing literature, the review identified and categorised the following uncertainties (mention them here), and examined how they influence strategic decision-making and optimization process in CLSC. To the best of the authors’ knowledge, such a review with critical analysis has not received its deserved attention in current literature. With the gained insights, this paper investigated the challenges and limitations associated with CLSE implementation in an uncertain environment. The discussion draws upon existing literature to highlight the hurdles that exist and propose potential methods to overcome them. A future road map is introduced by proposing a conceptual connection between circular supply chains and inventory management, based on a structured analysis approach

    Solving closed-loop supply chain problems using game theoretic particle swarm optimisation

    Full text link
    © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. In this paper, we propose a closed-loop supply chain network configuration model and a solution methodology that aim to address several research gaps in the literature. The proposed solution methodology employs a novel metaheuristic algorithm, along with the popular gradient descent search method, to aid location-allocation and pricing-inventory decisions in a two-stage process. In the first stage, we use an improved version of the particle swarm optimisation (PSO) algorithm, which we call improved PSO (IPSO), to solve the location-allocation problem (LAP). The IPSO algorithm is developed by introducing mutation to avoid premature convergence and embedding an evolutionary game-based procedure known as replicator dynamics to increase the rate of convergence. The results obtained through the application of IPSO are used as input in the second stage to solve the inventory-pricing problem. In this stage, we use the gradient descent search method to determine the selling price of new products and the buy-back price of returned products, as well as inventory cycle times for both product types. Numerical evaluations undertaken using problem instances of different scales confirm that the proposed IPSO algorithm performs better than the comparable traditional PSO, simulated annealing (SA) and genetic algorithm (GA) methods

    Robust Design of a Closed-loop Supply Chain Network for Uncertain Carbon Regulations and Random Product Flows

    Get PDF
    This paper addresses a multi-period capacitated closed-loop supply chain (CLSC) network design problem subject to uncertainties in the demands and returns as well as the potential carbon emission regulations. Two promising regulatory policy settings are considered: namely, (a) a carbon cap and trade system, or (b) a tax on the amount of carbon emissions. A traditional CLSC network design model using stochastic programming is extended to integrate robust optimization to account for regulations of the carbon emissions caused by transportation. We propose a hybrid model to account for both regulatory policies and derive tractable robust counterparts under box and ellipsoidal uncertainty sets. Implications for network configuration, product allocation and transportation configuration are obtained via a detailed case study. We also present computational results that illustrate how the problem formulation under an ellipsoidal uncertainty set allows the decision maker to balance the trade-off between robustness and performance. The proposed method yields solutions that provide protection against the worst-case scenario without being too conservative

    Integrating Closed-loop Supply Chains and Spare Parts Management at IBM

    Get PDF
    Ever more companies are recognizing the benefits of closed-loop supply chains that integrate product returns into business operations. IBM has been among the pioneers seeking to unlock the value dormant in these resources. We report on a project exploiting product returns as a source of spare parts. Key decisions include the choice of recovery opportunities to use, the channel design, and the coordination of alternative supply sources. We developed an analytic inventory control model and a simulation model to address these issues. Our results show that procurement cost savings largely outweigh reverse logistics costs and that information management is key to an efficient solution. Our recommendations provide a basis for significantly expanding the usage of the novel parts supply source, which allows for cutting procurement costs

    Optimal scope of supply chain network & operations design

    Get PDF
    The increasingly complex supply chain networks and operations call for the development of decision support systems and optimization techniques that take a holistic view of supply chain issues and provide support for integrated decision-making. The economic impacts of optimized supply chain are significant and that has attracted considerable research attention since the late 1990s. This doctoral thesis focuses on developing manageable and realistic optimization models for solving four contemporary and interrelated supply chain network and operations design problems. Each requires an integrated decision-making approach for advancing supply chain effectiveness and efficiency. The first model formulates the strategic robust downsizing of a global supply chain network, which requires an integrated decision-making on resource allocation and network reconfiguration, given certain financial constraints. The second model also looks at the strategic supply chain downsizing problem but extends the first model to include product portfolio selection as a downsizing decision. The third model concerns the redesign of a warranty distribution network, which requires an integrated decision-making on strategic network redesign and tactical recovery process redesign. The fourth model simultaneously determines the operational-level decisions on job assignment and process sequence in order to improve the total throughput of a production facility unit

    Uncertainty Models in Reverse Supply Chain: A Review

    Get PDF
    Reverse logistic has become an important topic for the organization due to growing environmental concern, government regulation, economic value, and sustainable competitiveness. Uncertainty is one of the key factors in the reverse supply chain that must be controlled; thus, the company could optimize the reverse supply chain function. This paper discusses progress in reverse logistic research. A total of 72 published articles were selected, analyzed, categorized and the research gaps were found among them. The study began by analyzed previous research articles in reverse logistic. In this stage, we also collected and reviewed journals discussing about the reverse supply chain. Meanwhile, the result of this stage shows that uncertainty factor has not been reviewed in detail. The most common theme as the background research in reverse logistic is environmental and economic aspect. Uncertainty in Close Loop Supply Chain is the most widely used approach, followed by the usage on reverse logistics, reverse supply chain and reverse Model. The most used approach and method on uncertainty are Mixed Integer Linear Programing, mixed integer nonlinear Programing, Robust Fuzzy Stochastic Programming, and Improved kriging-assisted robust optimization method. Customer demand, total cost, product returns are the most widely researched aspects. This paper may be useful for academicians, researchers and practitioners in learning on reverse logistic and reverse supply chain; therefore, close loop supply chain can be guidance for upcoming researches. Research opportunity based on this research combines total cost, quality return product, truck capacity, delivery route, remanufacturing capacity, and facility location got optimum function in uncertainty. The research method and approach for MINLP, IK-MRO and RSFP provide many opportunities for research. For theme and area in reverse logistic, close loop supply chain is the theme that provides the most research opportunities
    • 

    corecore