2 research outputs found

    Characterizing and evaluating autonomous controllers

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el a帽o acad茅mico 2016-2017La autonom铆a en rob贸tica por medio de t茅cnicas de Inteligencia Artificial, particularmente mediante el empleo sistemas de Planning & Scheduling (P&S), presenta un amplio campo de investigaci贸n con gran inter茅s en aplicaciones como la rob贸tica de exploraci贸n para entornos hostiles o dif铆cilmente accesibles para los humanos. Sin embargo, las pruebas experimentales realizadas en los art铆culos de divulgaci贸n cient铆fica sobre controladores aut贸nomos generalmente no est谩n correctamente realizadas, ya que se carece de una metodolog铆a de estudio com煤n. En este sentido se hace complicado comparar los nuevos sistemas con los trabajos previos, pr谩ctica habitual en otras disciplinas. Por ello, en esta tesis se propone un entorno de trabajo llamado On-Ground Autonomy Test Environment (OGATE) para permitir la evaluaci贸n de controladores aut贸nomos. Este desarrollo consta de una metodolog铆a para estructurar la fase experimental, as铆 como de un conjunto de m茅tricas independientes tanto del dominio como del campo de aplicaci贸n del sistema rob贸tico. La uni贸n de estos elementos, mediante un software que automatiza el proceso experimental, permite obtener evaluaciones reproducibles y objetivas sobre los controladores aut贸nomos bajo estudio. Para demostrar la efectividad del entorno de trabajo, se han utilizado dos controladores aut贸nomos basados en diferentes paradigmas para P&S. Primero se ha utilizado el Goal Oriented Autonomous Controller (GOAC), desarrollado bajo contrato de la Agencia Espacial Europea. Segundo, durante esta tesis se ha implementado la Model-Based Architecture (MoBAr). MoBAr est谩 dise帽ado con el objetivo de probar diferentes planificadores basados en el Planning Domain Definition Language (PDDL) para conseguir autonom铆a a bordo. En este sentido, en la tesis tambi茅n se introduce un nuevo planificador llamado Unified Path Planning and Task Planning Architecture (UP2TA). Dicho sistema integra un planificador general basado en PDDL y algoritmos de planificaci贸n de rutas con el objetivo de generar planes m谩s seguros y eficientes para robots de exploraci贸n. Referente a la planificaci贸n de rutas, en la tesis se incluye la definici贸n de dos nuevos algoritmos enfocados en la movilidad de los robots de exploraci贸n: S-Theta* y 3D Accurate Navigation Algorithm (3Dana). S-Theta* permite obtener rutas con un menor n煤mero de cambios de direcci贸n que algoritmos previos, mientras que 3Dana genera rutas m谩s seguras y restringidas en funci贸n de la pendiente del entorno, empleando para ello Modelos Digitales de Terreno (MDT) y mapas de costes trasversales. Partiendo de GOAC y MoBAr, se ha empleado OGATE para evaluar ambos controladores, siendo posible caracterizar aspectos relevantes de la integraci贸n entre Planning & Execution (P&E) dif铆cilmente accesibles mediante otros enfoques. Adem谩s, los resultados obtenidos son objetivos y reproducibles, permitiendo realizar comparaciones entre controladores aut贸nomos con diferentes tecnolog铆as y/o paradigmas de P&S

    Discovering and Utilising Expert Knowledge from Security Event Logs

    Get PDF
    Security assessment and configuration is a methodology of protecting computer systems from malicious entities. It is a continuous process and heavily dependent on human experts, which are widely attributed to being in short supply. This can result in a system being left insecure because of the lack of easily accessible experience and specialist resources. While performing security tasks, human experts often revert to a system's event logs to determine status of security, such as failures, configuration modifications, system operations etc. However, finding and exploiting knowledge from event logs is a challenging and time-consuming task for non-experts. Hence, there is a strong need to provide mechanisms to make the process easier for security experts, as well as providing tools for those with significantly less security expertise. Doing so automatically allows for persistent and methodical testing without an excessive amount of manual time and effort, and makes computer security more accessible to on-experts. In this thesis, we present a novel technique to process security event logs of a system that have been evaluated and configured by a security expert, extract key domain knowledge indicative of human decision making, and automatically apply acquired knowledge to previously unseen systems by non-experts to recommend security improvements. The proposed solution utilises association and causal rule mining techniques to automatically discover relationships in the event log entries. The relationships are in the form of cause and effect rules that define security-related patterns. These rules and other relevant information are encoded into a PDDL-based domain action model. The domain model and problem instance generated from any vulnerable system can then be used to produce a plan-of-action by employing a state-of-the-art automated planning algorithm. The plan can be exploited by non-professionals to identify the security issues and make improvements. Empirical analysis is subsequently performed on 21 live, real world event log datasets, where the acquired domain model and identified plans are closely examined. The solution's accuracy lies between 73% - 92% and gained a significant performance boost as compared to the manual approach of identifying event relationships. The research presented in this thesis is an automation of extracting knowledge from event data steams. The previous research and current industry practices suggest that this knowledge elicitation is performed by human experts. As evident from the empirical analysis, we present a promising line of work that has the capacity to be utilised in commercial settings. This would reduce (or even eliminate) the dire and immediate need for human resources along with contributing towards financial savings
    corecore