3 research outputs found

    Integrating Water Observation from Space Product and Time-Series Flow Data for Modeling Spatio-Temporal Flood Inundation Dynamics

    No full text
    Periodic inundation of floodplains and wetlands is critical for the well being of ecosystems. This study proposes a simple but efficient model that integrates time series daily flow data and the Landsat-derived Water Observation from Space (WOfS) product to model the spatio-temporal flood inundation dynamics of the Murray-Darling Basin. A zone-gauge framework is adopted in order to reduce the hydrologic complexity of the large river basin. Under this framework, flood frequency analysis was conducted at each gauge station to identify historical peak flows and their annual exceedance probabilities. The results were then linked with the WOfS dataset through date to model the inundation probability in each zone. Inundation frequency was derived by simply overlaying the yearly inundation extent from 1988 to 2015 and counting the inundation times. Both the resultant inundation frequency map and inundation probability map are of ecological significance for the survival and prosperity of riparian ecosystems. The assumptions of the model were validated carefully to enhance its theoretical basis. The WOfS dataset was also compared with another independent water observation dataset to cross-validate its reliability. It is hoped that with the development of more and more global high-resolution surface water datasets, this study could inspire more studies that integrate surface water datasets with hydrological observations for flood inundation modeling

    Remote Sensing of Surface Water Dynamics in the Context of Global Change - A Review

    Get PDF
    Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource—if not overexploited—sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution
    corecore