2 research outputs found

    Mega-Events: Assessing Road Safety through an Operating Framework. An Application for the Milano–Cortina 2026 Winter Olympic Games †

    Get PDF
    To meet the United Nations and European Union goals of reducing road crash fatalities and injuries, it is also relevant to address the negative externalities due to mega-events on the road network and the local communities, to assess the safety of the road network involved, and to implement appropriate measures for different road environments. Despite their relevance, the literature often overlooks social costs and risks associated with mega-events. This study presents an operating framework for rapidly assessing the safety of the Milano–Cortina 2026—“Via Olimpica” road—which will host a significant proportion of the traffic during the Winter Olympic Games in 2026. The framework proposes a simplified Road Infrastructure Safety Management (RISM) to address the unique challenges posed by the limited time available for screening and implementation by local authorities. The framework integrates four data sources and follows a seven-step procedure. It provides recommendations for improving road safety by identifying critical road sections and blackspots. Road authorities, practitioners, and public administrations may all benefit from the framework, as it makes it easier to prioritise safety improvements within time constraints

    A Straightforward Framework for Road Network Screening to Lombardy Region (Italy)

    Get PDF
    It is not possible to deal with sustainable mobility without considering road safety as a key element: Target 3.6 of the Sustainable Development Goals aims at halving the number of road deaths by 2030. To do so, further effort and effective tools are required for road authorities, to implement improvement measures and enhance road safety for all. Road network screening (RNS) is the first step of the whole Road Infrastructure Safety Management (RISM) System process. It is applied to a wide scale to assess the safety performance of the whole road network and identify the worst performing roads (or sites). The literature is quite rich with RNS models and methods, which have greatly improved, recently. Moreover, although many national frameworks on road safety have been issued over time, some barriers remain, specifically related to data quality, such as accurate crash location, which is mainly used to integrate crash data with other databases. In addition, most of these frameworks adopted partial indexes to identify black spots and presented results using fixed maps for visualization. This paper fills these gaps by the proposal of a straightforward operational framework to perform RNS, based on a simple and flexible rationale to integrate raw crash, traffic, and road data. Specifically, the framework: (i) manages crash location data, without relying on plane or geographical coordinates, which are missing or inaccurate and still are a crucial issue in many European countries such as Italy; (ii) adopts an adjusted accident cost rate index that integrates frequency and severity of crashes as well as a measurement of exposure; (iii) introduces variable maps that show the results at different jurisdiction levels. A relevant case study demonstrates the usefulness of this framework using 30,000+ crash data of the whole non-urban road network of the Lombardy Region (Northern Italy). Road authorities could adopt this framework to perform an accurate safety screening on the overall regional road network. Moreover, this framework could be implemented in a road traffic safety managerial system to better prioritise safety interventions within a tight budget and help achieve sustainable development targets
    corecore