1,094 research outputs found

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    ALT-C 2010 - Conference Proceedings

    Get PDF

    Twelve years of iPads and apps in schools : what conditions support effective practices in K-6 classrooms?

    Get PDF
    Since their release in 2010, iPads and their associated apps have been touted as ‘game changers’ for schools struggling with technology provisioning issues, that limited their ability to fully leverage the educational potential of digital devices on a ‘whole class’ basis. Since then, a variety of schemes have been implemented such as ‘Bring Your Own Device’ (BYOD) and portable ‘device pods’, as systems for improving access to, and utilisation of, mobile technologies in classroom curriculum. In many schools, concurrent to these initiatives have been improvements in technology infrastructure, including upgrades to external connectivity via the advent of high-speed fibre-based broadband, and internally through the establishment of school wifi networks and associated online security systems. Aligned with these developments has been a growing body of research exploring how teachers at all levels of education systems have incorporated these new resources into their curriculum, and examining what, if any, benefits have resulted. This article is an analysis of key findings from four published studies undertaken by the author between 2015 and 2021 in New Zealand K-6 schools, to build understanding of factors that contributed to the effective practices with mobile devices witnessed in the research classrooms. While numerous separate studies have been undertaken exploring specific outcomes from the use of iPads and other mobile technologies in different educational contexts, the analysis presented in this article attempts to identify common factors existing across four purposively selected studies, that contributed to their success. The studies were deliberately chosen to provide a broad overview of applications of this technology in different K-6 classrooms for different purposes, supporting deeper understanding of the factors that underpin effective teaching and learning with and through mobile devices, in schools. This is important, as it builds knowledge of the fundamental foundations to effective educational use of mobile devices, regardless of the learning context in which they are used, and could assist teachers in designing, implementing and assessing curricular that optimises the learning potential of these devices. Copyright © 2023 Falloon

    Teaching with an intelligent electronic chalkboard

    Full text link

    Context-Aware Mobile Augmented Reality Visualization in Construction Engineering Education

    Get PDF
    Recent studies suggest that the number of students pursuing science, technology, engineering, and mathematics (STEM) degrees has been generally decreasing. An extensive body of research cites the lack of motivation and engagement in the learning process as a major underlying reason of this decline. It has been discussed that if properly implemented, instructional technology can enhance student engagement and the quality of learning. Therefore, the main goal of this research is to implement and assess effectiveness of augmented reality (AR)-based pedagogical tools on student learning. For this purpose, two sets of experiments were designed and implemented in two different construction and civil engineering undergraduate level courses at the University of Central Florida (UCF). The first experiment was designed to systematically assess the effectiveness of a context-aware mobile AR tool (CAM-ART) in real classroom-scale environment. This tool was used to enhance traditional lecture-based instruction and information delivery by augmenting the contents of an ordinary textbook using computer-generated three-dimensional (3D) objects and other virtual multimedia (e.g. sound, video, graphs). The experiment conducted on two separate control and test groups and pre- and post- performance data as well as student perception of using CAM-ART was collected through several feedback questionnaires. In the second experiment, a building design and assembly task competition was designed and conducted using a mobile AR platform. The pedagogical value of mobile AR-based instruction and information delivery to student learning in a large-scale classroom setting was also assessed and investigated. Similar to the first experiment, students in this experiment were divided into two control and test groups. Students\u27 performance data as well as their feedback, suggestions, and workload were systematically collected and analyzed. Data analysis showed that the mobile AR framework had a measurable and positive impact on students\u27 learning. In particular, it was found that students in the test group (who used the AR tool) performed slightly better with respect to certain measures and spent more time on collaboration, communication, and exchanging ideas in both experiments. Overall, students ranked the effectiveness of the AR tool very high and stated that it has a good potential to reform traditional teaching methods

    School Improvement Plan: Updating Curriculum, Technology and Classrooms for Education 4.0

    Get PDF
    This school improvement plan describes Education 4.0 and elucidates the critical need for updating school curriculum and teaching methods. Our education system is largely outdated and ill prepares students for their future. The following improvement plan seeks to transform pedagogy into that which is student centered. To do this, schools must update their curriculum and teaching methods, implement the latest technology, and redesign the classroom setting. Through this project, I will identify the reasons for needed change in schools and explain Education 4.0
    • …
    corecore