3 research outputs found

    Applying cognitive science to digital human modelling for user centred design

    Get PDF
    To build software which, at the press of a button, can tell you what cognition related hazards there are within an environment or a task, is probably well into the future if it is possible at all. However, incorporating existing tools such as task analysis tools, interface design guidelines and information about general cognitive limitations in humans, could allow for greater evaluative options for cognitive ergonomics. The paper discusses previous approaches to the subject and suggests adding design and evaluative guiding in Digital Human Modelling that will help a user with little or no knowledge of cognitive science to design and evaluate a human- product interaction scenario

    Human Reliability Analysis using a Human Factors Hazard Model

    Get PDF
    Human Reliability Analysis (HRA) has found application within a diverse set of engineering domains, but the methods used to apply HRA are often complicated, time-consuming, costly to apply, specific to particular (i.e., nuclear) applications, and are not suitable for direct comparison amongst themselves. This paper proposes a Human Factors Hazard Model (HFHM), which builds an HRA method from the tools of Fault Tree Analysis (FTA), Event Tree Analysis (ETA), and a novel model of considering serial Human Error Probability (HEP) more relevant to psychomotor-intensive industrial and commercial applications such as manufacturing, teleoperation, and vehicle operation. The HEP approach uses Performance Shaping Factors (PSFs) relevant to human behavior, as well as specific characteristics unique to a system architecture and its corresponding operational behavior. The HFHM tool is intended to establish a common analysis approach, to simplify and automate the modeling of the likelihood of a mishap due to a human-system interaction during a hazard event. The HFHM is executed commercial software tools (MS Excel and SysML) such that trade and sensitivity studies can be conducted and iterated automatically. The results generated by the HFHM can be used to guide risk assessment, safety requirements generation and management, design options, and safety controls within the system design architecting process. Verification and evaluation of the HFHM through simulation and subject matter expert evaluation illustrate the value of the HFHM as a tool for HRA and system safety analysis in a set of key industrial applications

    Development of a human factors hazard model for use in system safety analysis

    Get PDF
    2021 Fall.Includes bibliographical references.Traditional methods for Human Reliability Analysis (HRA) have been developed with specific applications or industries in mind. Additionally, these methods are often complicated, time consuming, costly to apply, and are not suitable for direct comparison amongst themselves. The proposed Human Factors Hazard Model (HFHM) utilizes the established and time-tested probabilistic analysis tools of Fault Tree Analysis (FTA) and Event Tree Analysis (ETA), and integrates them with a newly developed Human Error Probability (HEP) predictive tool. This new approach is developed around Performance Shaping Factors (PSFs) relevant to human behavior, as well as specific characteristics unique to a system architecture and its corresponding operational behavior. This updated approach is intended to standardize, simplify, and automate the approach to modeling the likelihood of a mishap due to a human-system interaction during a hazard event. The HFHM is exemplified and automated within a commercial software tool such that trade and sensitivity studies can be conducted and validated easily. The analysis results generated by the HFHM can be used as a standardized guide to SE analysts as a well as design engineers with regards to risk assessment, safety requirements, design options, and needed safety controls within the system architecture. Verification and evaluation of the HFHM indicate that it is an effective tool for HRA and system safety with results that accurately predict HEP values that can guide design efforts with respect to human factors. In addition to the development and automation of the HFHM, application within commonly used system safety Hazard Analysis Techniques (HATs) is established. Specific utilization of the HFHM within system or subsystem level FTA and Failure Mode and Effects Analysis (FMEA) is established such that human related hazards can more accurately be accounted for in system design safety analysis and lifecycle management. Lastly, integration of the HFHM within Model-Based System Engineering (MBSE) emphasizing an implementation into the System Modeling Language (SysML) is established using a combination of existing hazard analysis libraries and custom designed libraries within the Unified Modeling Language (UML). The FTA / ETA components of the hazard model are developed within SysML partially utilizing the RAAML (Risk Analysis and Assessment Modeling Language) currently under development by the Object Management Group (OMG), as well as a unique recursive analysis library. The SysML model successfully replicates the probabilistic calculation results of the HFHM as generated by the native analytical model. The SysML profiles developed to implement HFHM have application in integration of conventional system safety analysis as well as requirements engineering within lifecycle management
    corecore