1,297 research outputs found

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Automatic Pronunciation Assessment -- A Review

    Full text link
    Pronunciation assessment and its application in computer-aided pronunciation training (CAPT) have seen impressive progress in recent years. With the rapid growth in language processing and deep learning over the past few years, there is a need for an updated review. In this paper, we review methods employed in pronunciation assessment for both phonemic and prosodic. We categorize the main challenges observed in prominent research trends, and highlight existing limitations, and available resources. This is followed by a discussion of the remaining challenges and possible directions for future work.Comment: 9 pages, accepted to EMNLP Finding

    Stochastic Pronunciation Modelling for Out-of-Vocabulary Spoken Term Detection

    Get PDF
    Spoken term detection (STD) is the name given to the task of searching large amounts of audio for occurrences of spoken terms, which are typically single words or short phrases. One reason that STD is a hard task is that search terms tend to contain a disproportionate number of out-of-vocabulary (OOV) words. The most common approach to STD uses subword units. This, in conjunction with some method for predicting pronunciations of OOVs from their written form, enables the detection of OOV terms but performance is considerably worse than for in-vocabulary terms. This performance differential can be largely attributed to the special properties of OOVs. One such property is the high degree of uncertainty in the pronunciation of OOVs. We present a stochastic pronunciation model (SPM) which explicitly deals with this uncertainty. The key insight is to search for all possible pronunciations when detecting an OOV term, explicitly capturing the uncertainty in pronunciation. This requires a probabilistic model of pronunciation, able to estimate a distribution over all possible pronunciations. We use a joint-multigram model (JMM) for this and compare the JMM-based SPM with the conventional soft match approach. Experiments using speech from the meetings domain demonstrate that the SPM performs better than soft match in most operating regions, especially at low false alarm probabilities. Furthermore, SPM and soft match are found to be complementary: their combination provides further performance gains

    Voice Conversion

    Get PDF
    • …
    corecore