5 research outputs found

    Low Power Synchronous Design of Hardware Architecture for Ieee 754 Single Precision Floating Point Fast Fourier Transform

    Get PDF
    Signal Processing, communication systems, Digital information systems and many other fields of DSP have the wide need for Fast Fourier Transformation computations. Hardware architecture for computing IEEE 754 single precision floating point FFT is proposed here and the work is focused on power optimization of the design. Cooley-Tukey�s (DIF) Decimation in Frequency domain butterfly algorithm is used for the design implementation. Proposed design is a synchronous architecture and proved to be an efficient compared to the earlier parallel architectures. The clock latency and hardware over head of the design is productive and cost effective compared to the designs known earlier. The design is implemented in RTL Verilog and logically verified using Altera-Model Sim. Synthesis of the design is carried out in gscl-45 nm library, 1.1 v process using Synopsys design vision and prime time tools. The power reports showed that the proposed design consumes 90% less power with 50% reduced clock latency compared to earlier designs. Frequency of the design is compromised to an extent but can be improved using the suggested novel sub-designs of floating point add/sub and multiply blocks. Techniques for further power optimization are also given for future implementations.Electrical Engineerin

    Integrating Clock Gating and Power Gating for Combined Dynamic and Leakage Power Optimization in Digital CMOS Circuits

    No full text
    Clock gating and power gating are two of the most effective techniques that are applied today for reducing dynamic and leakage power, respectively, in digital CMOS circuits. The combined use of the two solutions, however, poses some challenges in terms of practical integration of the required control logic and the power/timing overhead associated to it. This paper presents an analysis methodology and a prototype CAD tool that support the designer in understanding when the joint application of clock gating and power gating may result in significant power savings

    Integrating Clock Gating and Power Gating for Combined Dynamic and Leakage Power Optimization in Digital CMOS Circuits

    No full text
    Clock gating and power gating are two of the most effective techniques that are applied today for reducing dynamic and leakage power, respectively, in digital CMOS circuits. The combined use of the two solutions, however, poses some challenges in terms of practical integration of the required control logic and the power/timing overhead associated to it. This paper presents an analysis methodology and a prototype CAD tool that support the designer in understanding when the joint application of clock gating and power gating may result in significant power savings

    Energy-efficient hardware design based on high-level synthesis

    Get PDF
    This dissertation describes research activities broadly concerning the area of High-level synthesis (HLS), but more specifically, regarding the HLS-based design of energy-efficient hardware (HW) accelerators. HW accelerators, mostly implemented on FPGAs, are integral to the heterogeneous architectures employed in modern high performance computing (HPC) systems due to their ability to speed up the execution while dramatically reducing the energy consumption of computationally challenging portions of complex applications. Hence, the first activity was regarding an HLS-based approach to directly execute an OpenCL code on an FPGA instead of its traditional GPU-based counterpart. Modern FPGAs offer considerable computational capabilities while consuming significantly smaller power as compared to high-end GPUs. Several different implementations of the K-Nearest Neighbor algorithm were considered on both FPGA- and GPU-based platforms and their performance was compared. FPGAs were generally more energy-efficient than the GPUs in all the test cases. Eventually, we were also able to get a faster (in terms of execution time) FPGA implementation by using an FPGA-specific OpenCL coding style and utilizing suitable HLS directives. The second activity was targeted towards the development of a methodology complementing HLS to automatically derive power optimization directives (also known as "power intent") from a system-level design description and use it to drive the design steps after HLS, by producing a directive file written using the common power format (CPF) to achieve power shut-off (PSO) in case of an ASIC design. The proposed LP-HLS methodology reduces the design effort by enabling designers to infer low power information from the system-level description of a design rather than at the RTL. This methodology required a SystemC description of a generic power management module to describe the design context of a HW module also modeled in SystemC, along with the development of a tool to automatically produce the CPF file to accomplish PSO. Several test cases were considered to validate the proposed methodology and the results demonstrated its ability to correctly extract the low power information and apply it to achieve power optimization in the backend flow

    Zuverlässige und Energieeffiziente gemischt-kritische Echtzeit On-Chip Systeme

    Get PDF
    Multi- and many-core embedded systems are increasingly becoming the target for many applications that require high performance under varying conditions. A resulting challenge is the control, and reliable operation of such complex multiprocessing architectures under changes, e.g., high temperature and degradation. In mixed-criticality systems where many applications with varying criticalities are consolidated on the same execution platform, fundamental isolation requirements to guarantee non-interference of critical functions are crucially important. While Networks-on-Chip (NoCs) are the prevalent solution to provide scalable and efficient interconnects for the multiprocessing architectures, their associated energy consumption has immensely increased. Specifically, hard real-time NoCs must manifest limited energy consumption as thermal runaway in such a core shared resource jeopardizes the whole system guarantees. Thus, dynamic energy management of NoCs, as opposed to the related work static solutions, is highly necessary to save energy and decrease temperature, while preserving essential temporal requirements. In this thesis, we introduce a centralized management to provide energy-aware NoCs for hard real-time systems. The design relies on an energy control network, developed on top of an existing switch arbitration network to allow isolation between energy optimization and data transmission. The energy control layer includes local units called Power-Aware NoC controllers that dynamically optimize NoC energy depending on the global state and applications’ temporal requirements. Furthermore, to adapt to abnormal situations that might occur in the system due to degradation, we extend the concept of NoC energy control to include the entire system scope. That is, online resource management employing hierarchical control layers to treat system degradation (imminent core failures) is supported. The mechanism applies system reconfiguration that involves workload migration. For mixed-criticality systems, it allows flexible boundaries between safety-critical and non-critical subsystems to safely apply the reconfiguration, preserving fundamental safety requirements and temporal predictability. Simulation and formal analysis-based experiments on various realistic usecases and benchmarks are conducted showing significant improvements in NoC energy-savings and in treatment of system degradation for mixed-criticality systems improving dependability over the status quo.Eingebettete Many- und Multi-core-Systeme werden zunehmend das Ziel für Anwendungen, die hohe Anfordungen unter unterschiedlichen Bedinungen haben. Für solche hochkomplexed Multi-Prozessor-Systeme ist es eine grosse Herausforderung zuverlässigen Betrieb sicherzustellen, insbesondere wenn sich die Umgebungseinflüsse verändern. In Systeme mit gemischter Kritikalität, in denen viele Anwendungen mit unterschiedlicher Kritikalität auf derselben Ausführungsplattform bedient werden müssen, sind grundlegende Isolationsanforderungen zur Gewährleistung der Nichteinmischung kritischer Funktionen von entscheidender Bedeutung. Während On-Chip Netzwerke (NoCs) häufig als skalierbare Verbindung für die Multiprozessor-Architekturen eingesetzt werden, ist der damit verbundene Energieverbrauch immens gestiegen. Daher sind dynamische Plattformverwaltungen, im Gegensatz zu den statischen, zwingend notwendig, um ein System an die oben genannten Veränderungen anzupassen und gleichzeitig Timing zu gewährleisten. In dieser Arbeit entwickeln wir energieeffiziente NoCs für harte Echtzeitsysteme. Das Design basiert auf einem Energiekontrollnetzwerk, das auf einem bestehenden Switch-Arbitration-Netzwerk entwickelt wurde, um eine Isolierung zwischen Energieoptimierung und Datenübertragung zu ermöglichen. Die Energiesteuerungsschicht umfasst lokale Einheiten, die als Power-Aware NoC-Controllers bezeichnet werden und die die NoC-Energie in Abhängigkeit vom globalen Zustand und den zeitlichen Anforderungen der Anwendungen optimieren. Darüber hinaus wird das Konzept der NoC-Energiekontrolle zur Anpassung an Anomalien, die aufgrund von Abnutzung auftreten können, auf den gesamten Systemumfang ausgedehnt. Online- Ressourcenverwaltungen, die hierarchische Kontrollschichten zur Behandlung Abnutzung (drohender Kernausfälle) einsetzen, werden bereitgestellt. Bei Systemen mit gemischter Kritikalität erlaubt es flexible Grenzen zwischen sicherheitskritischen und unkritischen Subsystemen, um die Rekonfiguration sicher anzuwenden, wobei grundlegende Sicherheitsanforderungen erhalten bleiben und Timing Vorhersehbarkeit. Experimente werden auf der Basis von Simulationen und formalen Analysen zu verschiedenen realistischen Anwendungsfallen und Benchmarks durchgeführt, die signifikanten Verbesserungen bei On-Chip Netzwerke-Energieeinsparungen und bei der Behandlung von Abnutzung für Systeme mit gemischter Kritikalität zur Verbesserung die Systemstabilität gegenüber dem bisherigen Status quo zeigen
    corecore