
 LOW POWER SYNCHRONOUS DESIGN OF

HARDWARE ARCHITECTURE FOR IEEE 754 SINGLE

PRECISION FLOATING POINT FAST FOURIER

TRANSFORM

 By

 SUNKARI SAI KIRAN

 Bachelor of Technology in Electronics & Communication

Engineering

 Jawaharlal Nehru Technological University

 Anantapur, Andhra, India.

April, 2013.

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2015

ii

 LOW POWER SYNCHRONOUS DESIGN OF

HARDWARE ARCHITECTURE FOR IEEE 754 SINGLE

PRECISION FLOATING POINT FFT

 Thesis Approved:

 Dr. James E. Stine

 Thesis Adviser

 Dr. Subhash C Kak

 Dr. Weihua Sheng

iii

Acknowledgements reflect the views of the author and are not endorsed by committee

members or Oklahoma State University.

ACKNOWLEDGEMENTS

I render my sincere thanks to Dr. James Stine for introducing me to the concepts of CMOS

VLSI design. I owe to his patience for handling me in all my tough situations and

motivating me to self –learn the interpersonal and conceptual skills. I thank Dr. Subhash

Kak and Dr. Weihua Sheng for their support and advice in the final stages of thesis

presentation and report review work. I am very thankful to OSU, especially the staff of

CASTs for providing me employment and supporting my living at OSU. Finally, I thank

my family, friends and well-wishers for giving me hope to live a better life and encouraging

me financially and emotionally to pursue Masters at OSU.

iv

Name: Sai Kiran Sunkari

Institution: Oklahoma State University

Date of Degree: December, 2015

Location: Stillwater, Oklahoma

Title of Study: LOW POWER SYNCHRONOUS DESIGN OF HARDWARE

ARCHITECTURE FOR IEEE 754 SINGLE PRECISION FLOATING POINT FAST

FOURIER TRANSFORM

Pages in Study: 52

Major Field: Electrical and Computer Engineering

Abstract: Signal Processing, communication systems, Digital information systems and

many other fields of DSP have the wide need for Fast Fourier Transformation

computations. Hardware architecture for computing IEEE 754 single precision floating

point FFT is proposed here and the work is focused on power optimization of the design.

Cooley-Tukey’s (DIF) Decimation in Frequency domain butterfly algorithm is used for the

design implementation. Proposed design is a synchronous architecture and proved to be an

efficient compared to the earlier parallel architectures. The clock latency and hardware

over head of the design is productive and cost effective compared to the designs known

earlier. The design is implemented in RTL Verilog and logically verified using Altera-

Model Sim. Synthesis of the design is carried out in gscl-45 nm library, 1.1 v process using

Synopsys design vision and prime time tools. The power reports showed that the proposed

design consumes 90% less power with 50% reduced clock latency compared to earlier

designs. Frequency of the design is compromised to an extent but can be improved using

the suggested novel sub-designs of floating point add/sub and multiply blocks. Techniques

for further power optimization are also given for future implementations.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.0) Introduction to Digital Signal Processing ...1

 1.1) Need for Frequency Transformation of a Digital Signal2

 1.2) Frequency Spectrum of Digital Sequences ...3

1.2.1) Periodic Digital Sequences ..3

1.2.2) Aperiodic Digital Sequences..3

1.2.3) Aperiodic Sequences with Finite Length (DFT)4

 1.3) Fast Fourier Transform ...4

 1.4) Butterfly Algorithm for Fast Fourier Transform ..6

 1.5) Decimation in Frequency, FFT algorithm ..8

 1.6) Importance of FFT ..9

1.6.1) Necessity for Special FFT Hardware ...10

1.6.2) Example of FFT using MATLAB Software11

 1.7) Thesis Organization ..11

II. BACKGROUND ...13

 2.0) FFT Core as Accelerator in TI-C55x DSPs ..13

 2.1) IEEE 754-1985 Single Precision Floating Point Number 15

2.1.1) Advantage of Floating Point DSPs over Fixed Point DSPs15

 2.2) CMOS Logic...16

2.2.1) Voltage and Current (I-V) Characteristics of MOSFET17

 2.3) Power Consumption Factors in CMOS ..19

2.3.1) Static Power Consumption ...19

2.3.2) Dynamic Power Consumption ..19

a) Switching Power ..19

b) Internal Short Circuit Current ..20

 2.4) Power Reduction Techniques ...20

2.4.1) Clock Gating ..20

2.4.2) Power Gating ..21

2.4.3) Disadvantages of Power Gating ...21

 2.5) Parallel vs Pipelined Arithmetic Architecture ..21

vi

Chapter Page

III. IMPLEMENTATION ..23

 3.1) Design of Pipeline Architecture for FFT ..23

 3.2) Design of Butterfly Mux ..24

3.2.1) Control Logic for Butterfly Mux ...26

 3.3) Design of Twiddle factor Multiplication Block ...27

 3.4) Floating Point Add/Sub Design ..28

3.4.1) Sign Logic ..28

3.4.2) Equaling Exponents and Mantissa Shifting29

3.4.3) Addition and Normalization on Mantissas30

3.4.4) Subtraction and Normalization on Mantissas30

 3.5) Floating Point Multiplication..30

3.5.1) Output Sign ..31

3.5.2) Output Exponent ..31

3.5.3) Output Mantissa ..31

IV. RESULTS ..32

 4.1) RTL Description of the Design ..32

 4.2) Waveform & Simulation Results ..32

 4.3) Synthesis with Design Compiler ..33

 4.4) Power Estimation with Synopsys Primetime..35

4.4.1) VCD File for Switching Activity...35

4.4.2) SAIF File (Switching Activity Interchange Format) 35

 4.5) Library Specifications and Operating Conditions ..35

4.5.1) Library Unit Attributes ..36

4.5.2) Operating Conditions ...36

 4.6) Power Reports...36

 4.7) Power Comparisons ...36

 4.8) Performance Comparisons ...37

V. CONCLUSION ..39

REFERENCES ..40

APPENDICES ...44

vii

Chapter Page

 A-1) Verilog Design of Floating Point Multiplication ...44

 A-2) Verilog Design of Floating Point Add/Sub Module 45

 A-3) Verilog Design of First Mux Stage ..47

 A-4) Verilog Design of Second Mux Stage ...48

 A-5) Verilog Design of Third Mux Stage ..49

 A-6) Verilog Design of 1st Twiddle Factor Multiplication Stage50

 A-7) Verilog Design of 2nd Twiddle Factor Multiplication Stage51

 A-8) Verilog Design of Complete FFT (Top level Design)52

 A-9) C-Program for Generating 500 Random Input Vectors to Design53

viii

LIST OF TABLES

Table Page

1. Frequency Components of 8-point DFT ..5

2. Twiddle Factors of N=8 ...6

3. Bit Reversal of FFT ...8

4. Speed Efficiency of FFT over DFT ...10

5. FFT Performance on HWAFFT vs CPU ...15

6. Synchronous clocks with varied time periods…... 26
7. Control Logic for Butterfly Mux ..27

8. Logic for Actual Floating Point Add/Sub and Sign output29

9. Design Outputs Compared with MATLAB Results ..34

10. Power Results Compared to Earlier Designs ..36

11. Clock Latency Table for Higher Point FFTs ..37

12. Performance Comparison to Previous Design ...38

ix

LIST OF FIGURES

Figure Page

1. DSP Scheme in Communications ...1

2. Simplified 2-Point Decimation in Time FFT ..7

3. Butterfly Structure of 8-point Decimation in Time Domain FFT.........................7

4. Butterfly Structure of 8-point Decimation in Frequency Domain FFT9

5. Block Diagram of TI-C55x DSP with HWAFFT ...13

6. a) CMOS Logic Network b) CMOS-Inverter c) CMOS-OR gate 17

7. Clock Gating Technique ...20

8. Power Gating Technique...21

9. Three stage Pipelined Architecture Design of FFT ..23

10. Block Diagram of 5-stage pipelined Design in Computing FFT24

11. First Mux Stage ...25

12. Synchronization of Signals in Mux Block ...26

13. Twiddle Factor Multiplication Architecture ..28

14. Simulation Output Waveform of the Design ..33

1

CHAPTER I

INTRODUCTION

1.0) Introduction to Digital Signal Processing:

Digital Signal Processing (DSP) is one of the widely researched engineering concepts with

applications in diverse fields like air traffic control, military radar systems, radio, mobile and

satellite communications, weather forecasting. DSP provides an efficient and better way of

communication for transferring the digital signals from source to destination by processing and

analyzing the signals. This is because DSP is application – specific towards its intended application.

A general DSP scheme in communications as shown in Figure 1.

In Figure 1 in a general DSP scheme, the input is usually an analog signal generated naturally and

the analog filter allows required frequency bandwidths to the next stage. An Analog to Digital

Converter (ADC) converts the analog signals to digital signals and the DSP block analyzes and

processes these digital signals for efficient and error free transmission. At the receiver end, the

Analog

Input ADC Analog

Filter

DSP DAC Analog

Filter

Analog

Output

Figure 1: DSP Scheme in Communications (adapted from [1])

2

processed digital signal is converted back to an analog signal by a Digital to Analog converter

(DAC) and filtered by an analog filter. The present thesis work is focused on hardware design for

one of the core functions of a DSP block.

The primary function of DSP block is to perform mathematical and numerical manipulations on

digital signals. For example, let an analog signal with maximum frequency f having some noise

that is sampled at the Nyquist rate (Ts = 1/2f) and quantized to give a digital signal. This digital

signal may undergo any mathematical modifications, like frequency transformations,

differentiation, integration, noise filtering for the desired output. Generally, functions on a digital

signal can be implemented using a software approach with the help of a general computer or by

special DSP hardware. Though a general purpose computer is a straight forward and convenient

way for illustrating DSP theory and applications, high speed real time signal processing require

special purpose DSP hardware for faster calculations and accuracy. Between these two extremes

sits the programmable microprocessors possibly attached to general purpose host computers [1].

1.1) Need for Frequency Transformation of a Digital Signal:

Mathematical analysis of a signal can be done in either time domain or frequency domain. The time

domain functions of a signal are not feasible and flexible for implementation on hardware, so the

signals are transformed into the frequency domain to provide a better way for real time hardware

implementations. Frequency domain analysis is a better approach due to the following three main

reasons. a) The time domain analysis allows alterations to only the amplitude and phase of input

signal, whereas, the frequency domain analysis allows modifications to the underlying frequencies

of input signal b) The frequency ranges of a signal when obtained, helps in enhancing and

suppressing, band stopping, band filtering of desired frequencies from the original signal. c) If the

input signal is defined by its frequency spectrum and a system by its frequency response, then the

3

output is a simple multiplication of these terms compared to difficult convolution operation in time

domain.

1.2) Frequency Spectrum of Digital Sequences:

1.2.1) Periodic Digital Sequences: If a digital signal is strictly periodic, then the frequency

spectrum of the signal has discrete spectral lines, called the line spectrum and are harmonically

related. This series of spectral lines is called the Discrete Fourier Series. The Discrete Fourier Series

analysis equation is given in Equation 1.1 with ‘ak’ denoting the Kth frequency spectral component

and K varying from 0 to N-1 [1] .

 �� = 1� � �	
� ∗ �������
���

���
 ; 0 ≤ � ≤ N − 1 (1.1)

1.2.2) Aperiodic Digital Sequences: The Discrete Fourier series equation can be modified to

calculate the frequency spectrum of aperiodic signals. By observing Equation (1.1), it can be

deduced that increasing period N makes the frequency spectral lines (ak values) more close to each

other. Therefore, as N (period) tends to move towards infinity the input signal can be considered

almost aperiodic and the frequency spectral lines bunch together forming a continuous spectrum.

The product N * �� in Equation (1.1) is finite though N tends to move towards infinity. Rewriting

the Discrete Fourier Series Equation (1.1) by replacing factor 2!�/� with Ω gives Equation

(1.2) [1] .

#(Ω) =
 ∗ �� = % �	
� ∗ ��Ω�
���

���
 (1.2)

For aperiodic signals, in a general sense, the summation is calculated over all the positive and

negative values of n, so changing the limits in Equation (1.2) produces Equation (1.3) [1]:

4

 #(Ω) = % �	
� ∗ ��Ω� (1.3)
'

���'

The modified Discrete Fourier Series equation for aperiodic signals in Equation (1.3) is called the

Fourier transform (X(Ω)) and is a continuous frequency spectrum of aperiodic digital sequence

(�	
�).
1.2.3) Aperiodic Sequences with Finite Length (Discrete Fourier Transform (DFT)): In the

previous section, the frequency spectrum of aperiodic signals over entire sequence with n ranging

from -∞ to +∞ was calculated. But in the real world, aperiodic sequences with finite number of

non-zero sample values are more common. Therefore, the frequency spectrum of these finite length

aperiodic sequences is calculated by assuming that the finite non-zero sample values are periodic

over an entire length. For example, if the aperiodic sequence is finite with N samples, then the

sequence is treated as periodic with period N over the entire length. This simplifies the calculation

of frequency spectrum to Discrete Fourier series (periodic sequences) discussed earlier.

Multiplying and replacing �� ∗ � in Equation (1.1) with X (k), and rewriting exponential factor

as (���, the Discrete Fourier Transform equation is obtained as [1].

#(�) = % �	
� (���
���

���
, 0 ≤ � ≤ N − 1 (1.4)

The above equation gives the frequency spectrum of aperiodic sequence with finite N samples. On

the other hand, the IDFT (Inverse Discrete Fourier Transform) regenerates the original sequence

�	
� from X (k) called the synthesis equation and is given in Equation (1.5) [1].

�	
� = �
� + #	,� ∗ (�������

��� (1.5)

5

1.3) Fast Fourier Transform:

Expanding equation (1.4) for Discrete Fourier Transform the following frequency spectral

components at the output is obtained.

#(0) = �	0�(8� + �	0�(8� + �	0�(8� + �	0�(8� + �	0�(8� + �	0�(8� + �	0�(8� + �	0�(8�

#(1) = �	0�(8� + �	0�(8� + �	0�(8� + �	0�(80 + �	0�(81 + �	0�(82 + �	0�(83 + �	0�(84

#(2) = �	0�(8� + �	0�(8� + �	0�(81 + �	0�(83 + �	0�(85 + �	0�(8�� + �	0�(8�� + �	0�(8�1

#(3) = �	0�(8� + �	0�(80 + �	0�(83 + �	0�(86 + �	0�(8�� + �	0�(8�2 + �	0�(8�5 + �	0�(8��

#(4) = �	0�(8� + �	0�(81 + �	0�(85 + �	0�(8�� + �	0�(8�3 + �	0�(8�� + �	0�(8�1 + �	0�(8�5

#(5) = �	0�(8� + �	0�(82 + �	0�(8�� + �	0�(8�2 + �	0�(8�� + �	0�(8�2 + �	0�(80� + �	0�(802

#(6) = �	0�(8� + �	0�(83 + �	0�(8�� + �	0�(8�5 + �	0�(8�1 + �	0�(80� + �	0�(803 + �	0�(81�

#(7) = �	0�(8� + �	0�(84 + �	0�(8�1 + �	0�(8�� + �	0�(8�5 + �	0�(802 + �	0�(81� + �	0�(816

Table 1: Frequency Components of 8-point DFT [adapted from [2]]

From the equations in Table 1, an observation can be made that the number of multiplications

required for an 8 point DFT are a total of 64. In general, for an N point DFT, the total complex

multiplications required are 2*N2. If the sequence is either even or odd, the computational

complexity is still N2 multiplications. However, for a large sample number N = 1000, total of 106

multiplications are required in calculating DFT which is the most time consuming effort in

hardware. To reduce this time of computation and increase the calculation speed, an underlying

property of redundancy in the DFT is used.

It may be observed that, while calculating the DFT, the same values of �	
� (��� are

calculated many times as the computation proceeds. This is because the factor (��� is a periodic

function with limited number of distinct values. Therefore, using the symmetry and redundancy

within the DFT, efficient algorithm is derived to reduce the computational complexity of DFT.

These highly efficient algorithms for speeding up the calculation of DFT are called the Fast Fourier

6

Transforms [1]. Many FFT algorithms with different features are known in calculating DFT of

which the butterfly algorithm is the most commonly-used FFT algorithm and is widely used in

almost all of the hardware implementations for calculating DFTs.

1.4) Butterfly Algorithm for Fast Fourier Transform [2]:

A N point DFT can be broken down into N/2 DFTs. This is typically called decomposition [1].

Conventional decomposition assumes that the number of samples N is not a prime and in more

general N is restricted to the lengths of N=2i (called radix 2) where i is a positive integer.

Procedures for N=4i (called radix-4) can also be implemented, but are less prevalent than radix 2

DFTs. Breaking down the input sequences �	
� into shorter, interleaved, subsequences by

conventional decomposition is referred as the Decimation in Time domain FFT. Furthermore,

Decomposition of input sequences is achieved by using the properties of symmetry and periodicity

of (���(9:;<<= >�?9@AB) values. The present focus for this thesis is N=8 point FFT hardware.

A set of twiddle factors for N=8 is given in Table 2, to show the property of symmetry and

periodicity.

CDEE9AD (��F�/� = −(��; GA;@<;?;9D (��F� = (��;

Table 2: Twiddle Factors of N =8

(815 = (81� = (80� = (8�1 = (8�3 = (85 = (8� = 1

(816 = (81� = (800 = (8�2 = (8�4 = (86 = (8�

(81� = (801 = (8�3 = (8�5 = (8�� = (8�

(810 = (802 = (8�4 = (8�6 = (8�� = (80

(811 = (803 = (8�5 = (8�� = (8�� = (81 = − (8� = −1

(812 = (804 = (8�6 = (8�� = (8�0 = (82 = −(8�

(813 = (805 = (80� = (8�� = (8�1 = (83 = −(8�

(814 = (806 = (80� = (8�0 = (8�2 = (84 = −(80

7

Using the above properties and twiddle factor values, a N=8 point DFT can be split into

two 4-point DFTs. Decimating further, each 4-point DFT can be split into two 2-Point DFTs. For

example, if �	
� is defined for n = {0,1,2,3,4,5,6,7}, DFT of �	
� can be achieved in terms of four

2-point DFTs by splitting ‘n’ as {0,4},{2,6},{1,5},{3,7}. Two point DFTs for each pair are

computed and these four 2 point DFTs are combined into two four point DFTs. The two 2-point

DFTs are again combined to give the final output X(k). Therefore, an 8 point DFT can be achieved

by calculating four 2-point DFTs termed as radix-2 decimation. This decimation in Time domain

is classified as a Cooley-Tuckey algorithm for a FFT [30] and is generally represented as butterfly

structure in flow graph. A simplified 2-point butterfly and complete butterfly structure of 8 point

Decimation in Time domain FFT are given in the Figure 2 and Figure 3, respectively.

Figure 2: Simplified 2-Point Decimation in Time FFT (adapted from [2])

Figure 3: Butterfly Structure of 8-point Decimation in Time Domain FFT (adapted from [2], [30])

8

It is important to note that the inputs of decimation in time domain FFT algorithm do not follow a

natural order whereas, the output frequency spectra follow a natural order. Therefore, bit reversal

ordering must be applied to the input samples before proceeding to the actual butterfly operation.

Therefore, each input is assigned with a binary equivalent of decimation index ‘n’ and the binary

bits are placed in reverse order and converted back to the decimal number, as shown in Table 3.

This passes the correct order of inputs to get the outputs in natural order.

Decimal 0 1 2 3 4 5 6 7

Binary

Equivalent

000 001 010 011 100 101 110 111

Bit

reversal

000 100 010 110 001 101 011 111

Decimal

Equivalent

0 4 2 6 1 5 3 7

Table 3: Bit Reversal of FFT

1.5) Decimation in Frequency, FFT algorithm:

As discussed earlier, the decimation in time domain FFT divides the input data into subsequences

grouping for the even and odd parts. The decimation of a sequence in frequency domain of the FFT

is the counterpart of decimation in time where the output is decimated instead of input. In short,

the decimation in frequency can be achieved from decimation in time domain by simply reversing

the signal flow direction and interchanging inputs and outputs. In this scenario, the bit reversal is

applied to the frequency components at outputs as decimation starts from frequency components X

(k). Figure 4 gives the butterfly structure of decimation in frequency domain.

9

Figure 4: Butterfly Structure of 8-point DIF- FFT (adapted from [2], [30])

Throughout the implementation of the hardware architecture for the FFT, the decimation in

frequency butterfly FFT (Figure 4) is followed in this report and the reordering of outputs to get

the natural order of the sequence is assumed to be utilized.

1.6) Importance of FFT:

During a frequency transformation, the FFT is much more important compared to DFT, because of

its speed advantage. As stated earlier, the number of complex multiplications required in calculating

DFT is of the order N2. By breaking down N-point DFT into 2-point transforms, there are log2N

stages of computation (Figure 3). For a N sampled sequence, there are log2N stages and each stage

have a nominal N/2 number of complex multiplications. Thus, the total computation speed is of the

order N/2 log2N for an FFT. The speed efficiency of FFT over DFT tabulated in Table 4.

 Efficiency = HIJKI LM NLOPQKR OSQTUPQUNVTUL�W U� XYZ
HIJKI LM NLOPQKR OSQTUPQUNVTUL�W U� YYZ = �[

\[QL][� = ��[
�QL][� (1.6)

10

N DFT Multiplications FFT Multiplications FFT Efficiency

8 64 12 16:3

256 65,536 1024 64:1

512 2,62,144 2,304 114:1

1024 1,048,576 5,120 205:1

2048 4,194,304 11,264 372:1

4096 16,777,216 24,576 683:1

Table 4: Speed Efficiency of FFT over DFT [adapted from [2]]

Therefore, to reduce the computational time and increase the overall speed, the FFT is a more

feasible and convenient approach for implementing the frequency transformation function within

software or hardware implementations.

1.6.1) Necessity for Special FFT Hardware: DSP algorithms like the FFT can be implemented

either using software on general-purpose computers or by designing a separate hardware processor

for a DSP. When the FFT is implemented using software, the run time is significantly higher as

well as an increase in power consumption. In the worst case, if the number of samples in an input

sequence increase, a normal microprocessor may fail due to the tremendous power consumption.

Also, as the frequency components of a digital signal are extensively useful, such as in earth quake

sensing, magnetic resonance imaging (MRI), weather forecasting, mobile communications

(multiplexing and de-multiplexing), there is large need for separate hardware for DSP functions

like the FFT. Besides this, the DSP function involves lot of feedback and loop calculations when

compared to traditional arithmetic functions. This requires separate memory elements to store the

values for handling loops and feedback operations. A general microprocessor or microcontroller

fails to provide efficient feedback and loop operations, thereby, making processors important for

application –specific applications. The FFTW [4] is a widely accepted free software that generates

11

source codes and C-subroutines for computing FFT used in many applications. The performance

measures of FFTW on various commercial Intel microprocessors is published in [5].

1.6.2) Example of FFT using MATLAB Software: A simple example of 8-point FFT using

software approach (MATLAB [31]) is given below.

x = [1+1i 3+3i 4+4i 5+5i 8+8i 9+9i 10+10i 32+32i];

X= fft(x);

The FFT of the above given inputs as obtained from the MATLAB is

X= 72.0000+72.0000i, -21.4853+37.1838i, -30.0000+20.0000i, -39.1838-4.5147i, -

26.0000-26.0000i, -4.5147-39.1838i, 20.0000-30.0000i, 37.1838-21.4853i.

1.7) Thesis Organization:

This thesis work targets low power hardware design for computing the 8-point floating point FFT

and the next chapters discuss the hardware realization of the Cooley-Tukey butterfly algorithm

using a synchronous pipelined architecture approach.

Chapter 2 presents the real time example of Texas instrument’s hardware FFT accelerator

attached to C55x DSP. In addition, background for the IEEE 754 Single Precision format and

background of CMOS VLSI, use of CMOS in digital design, power consumption and reduction

factors in CMOS, parallel & pipeline architectures of FFT are introduced.

Chapter 3 details the implementation of floating point FFT architecture, design of the

butterfly module, control logic for butterfly operation, architecture for floating point addition/

subtraction and floating point multiplication.

Chapter 4 gives the reports of logical verification and power estimation of the design.

VHDL description of the design, simulation results, output waveform and comparison of the results

12

to MATLAB results, power & performance comparison to earlier designs are also detailed in

chapter 4. Chapter 5 concludes the thesis with suggestions for future modifications to the present

design in achieving higher speeds and more power optimized results.

13

CHAPTER II

BACKGROUND

2.0) FFT Core as Accelerator in TI-C55x DSPs [6]:

Texas instruments (TI) is one of the leading producers of low-power Digital Signal

Processors(DSPs). They are currently producing cores of lowest active power solution that are less

than 0.20mw/MHZ and delivering a performance that exceeds 12GFLOPs/W [6]. TI produces DSP

cores for the C55xx, C674x, C66x Digital Signal Processors series with power efficiency ranging

from 1mw/MHZ to 10mw/MHZ and speeds ranging from 60MHz to 1.2GHz [6]. The C55x DSP

processors supporting an FFT that is tightly attached to its core is briefly presented here.

Figure 5: Block Diagram of TI C55x DSP with HWAFFT (adapted from [6])

14

Figure 5 gives the block diagram of TI-C55x DSP with a FFT hardware accelerator tightly

coupled to the DSP core. The FFT hardware accelerator (HWAFFT) that comes with C55x can

perform complex valued DIT -FFT (Decimation in Time domain FFT) for 8 to 1024 fixed points.

It also performs the inverse FFT and bit reversal order operations of FFT. The HWAFFT is

physically present outside the DSP core, but is tightly coupled to the core and have access to full

memory bandwidth, core’s internal registers, accumulators and address generation units.

The core of HWAFFT consists of a single Radix-2 DIT butterfly implemented in hardware.

It supports two stages, a single stage mode and double-stage mode where one FFT stage is

performed in each pass of single stage mode and two FFT stages are performed in each pass of

double stage mode. The logic of HWAFFT is pipelined to deliver maximum throughput. The

HWAFFT core’s first pipeline stage computes complex multiplication with twiddle factors and

second pipeline stage performs complex addition and subtraction. The twiddle factors used in

complex multiplication are stored in a look up table (LUT) in the HWAFFT core.

The 512 complex twiddle factors (16bit each) are made available in LUT for computing up

to 1024 point FFTs. The latency of HWAFFT core is 5 cycles in single stage mode and 9 cycles in

double stage mode. The communication between the CPU and HWAFFT is achieved through the

software. The CPU instruction set architecture (ISA) includes a class of co-processor instructions

allowing CPU to initialize, pass data to and execute butterfly computations of the HWAFFT. The

HWAFFT shown in Figure 5 supports the input and output vectors of complex numbers with real

and imaginary parts represented in two’s complement, 16 bit fixed-point floating numbers. Table

5 compares the FFT performance of the HWAFFT vs FFT using the CPU (with CPU operated at

Vcore = 1.05volts and PLL = 60MHz) [6].

15

BR = Bit Reverse

Table 5: FFT Performance on HWAFFT vs CPU (adapted from [6])

2.1) IEEE 754 -1985 Single Precision Floating Point Number:

The IEEE 754 Single precision floating point format is a computer number format as mentioned in

IEEE 754-1985 standard [7], this standard is commonly used representation for numbers, on present

day computers. The IEEE 754 single precision floating point number occupies 4 bytes = 32bits in

a computer memory. The precision of floating point numbers is about 6 to 9 digits of decimal

representation. The 32 bit single precision floating point representation is shown in Equation 2.1

1 bit 8 bits 23 bits

Sign Exponent Mantissa

�^E_A = (−1) WU]� 2KRPL�K�T���4 (1. Mantissa) (2.1)

The 32 bit number representation is usually normalized (1.Mantissa) which says that all the

numbers lie between [1,2) in the IEEE 754 format. Since, all binary numbers except zero start with

a leading ‘1’. This gives an extra bit of precision when normalized.

2.1.1) Advantage of Floating Point DSPs over Fixed Point DSPs: All the present day integrated

circuits are developed using efficient electronic design automation (EDA) software tools which

follow floating point number systems. Developing an IC for fixed point FFT core causes more

effort on EDA software tools as it requires the need for the conversion of fixed point numbers into

Complex

FFT

FFT with HWA

CPU(Scale)

HWA versus CPU

FFT + BR Cycles Energy/FFT

(nJ/FFT)

FFT + BR Cycles Energy/FFT

(nJ/FFT)

x Times Faster

(Scale)

x Times Energy

Efficient (Scale)

8 pt 92 + 38 = 130 23.6 196 + 95 = 291 95.1 2.2 4

16 pt 115 + 55 = 170 32.1 344 + 117 = 461 157.1 2.7 4.9

32 pt 234 + 87 = 321 69.5 609 + 139 = 748 269.9 2.3 3.9

64 pt 285 + 151 = 436 98.5 1194 + 211 = 1,405 531.7 3.2 5.4

128 pt 633 + 27 9 = 912 219.2 2499 + 299 =2,798 1,090.4 3.1 5

256 pt 1133 + 535 = 1668 407.2 5404 + 543 = 5,947 2,354.2 3.6 5.8

512 pt 2693 + 1047 =3740 939.7 11829 + 907 = 12,736 5,097.5 3.4 5.4

1024 pt 5244 + 2071 = 7315 1,836.2 25934 + 1783 = 27,717 11,097.9 3.8 6

16

floating point representation when realizing the hardware. Therefore floating point architectures

are widely preferred to reduce the development time and effort of the IC. Also, though the fixed

point DSP processors are cheaper compared to floating point processors, the floating point DSPs

have an advantage of better precision, dynamic range and development time compared to fixed

point DSPs.

In floating point representation, the gap between a floating point number and its adjacent

number is usually one ten-millionth of the value of the number [8]. Therefore, when a signal value

is represented using floating point, there is an added noise to the signal during rounding off of the

number. This added noise results in signal to noise ratio of approximately 30 million to one [8].

In fixed point number representation, the gap between the number and its adjacent number

is usually one ten-thousandth of the value of the number which is very large compared to floating

point numbers. This large gap results in more noise added to the fixed point number when rounding

off and approximately leaves the signal to noise ratio to be, ten thousand to one. If the DSP has to

perform 500 iterations over the signal, it results an added noise on to fixed point number

representation during round off in each iteration, leaving the signal to noise ratio to be about twenty

to one. This is really poor performance that is undesired and can be overcome using floating point

representation. Moreover, most of the floating point DSPs can also execute fixed point operations

though the execution efficiency differs for both operations.

2.2) CMOS LOGIC:

Many IC technologies are available in the market and the choice of particular fabrication

technology depends on the design goal of end product. Early bipolar transistors (RTL-Resistor

Transistor Logic) are certainly the right choice for faster IC designs compared to MOSFET (Metal

Oxide Semiconductor Field Effect Transistor) families. But, the power consumption and heat

17

dissipation of the RTL family limits the number of transistors to be integrated in a single chip,

found in [9].

The introduction of MOSFET led to CMOS logic which solved the problem of transistor

limiting and power consumption in an IC. CMOS logic with its complementary nature and being

operated with smaller voltages is the best available technology for low-power designs [9]. Also,

Speed is compromised to an extent in CMOS compared to RTL, but this can be overruled with the

increased count of transistors and smaller less power consumption foot prints in CMOS.

Complementary N-MOS pull down and P-MOS pull up networks are used in building a CMOS

logic function as shown in Figure 6 a). The examples of inverter and OR gates implemented in

CMOS logic are given in Figure 6 b) and c).

Figure 6: a) CMOS Logic network b) CMOS- Inverter c) CMOS-OR gate

2.2.1) Voltage and Current (I-V) Characteristics of MOSFET [10]: A p-type or n-type MOSFET

transistor has three regions of operation which are cut-off region, linear region and saturation

region. The voltage-current equation between source and drain for the three regions are given below

for most transistors that operate under strong inversion [10].

fJW = 0 ; >@A g]W = 0 (h^9 @>> Ai;@
) (2.2)

Inputs

P-MOS

(Pull up)

N-MOS

(Pull down)

Outputs

A

Ā

Out
B

A

a) b) c)

18

fJW = β k g]W – gT– mno� p ; >@A gJW < gWVT (=;
�A Ai;@
) (2.3)

fJW = r (mnn – ms)[
� ; >@A gJW > gWVT (B�9^A�9;@
 Ai;@
) (2.4)

 where Vgs is the voltage between gate and source.

 Vds is the voltage between drain and source

 V dd is the supply voltage.

The gain or β value is dependent on geometry and the technology node utilized in the manufacturing

of MOSFET. The β value is given in Equation (2.5)

 β = u vwx y
z (2.5)

 where µ is the mobility of the charge carriers in the channel

 Cox is capacitance per unit area of gate oxide.

The gate capacitance (parallel plate capacitance between gate and channel in MOSFET) is given

by the equation (2.6)

h] = hH{(| (2.6)

 Where W is the width of the gate

 L is the length of the channel

Most of the technology nodes choose the minimum possible length L to reduce the delay and power

consumption.

The gate capacitance is rewritten in terms of technology parameters with constant hH{| denoted

hPKIOUNIL�

 h] = hGAE;?A@
((2.7)

 hH{| = hGAE;?A@
 (2.8).

19

2.3) Power Consumption Factors in CMOS:

Power in any electrical circuit is calculated using the product of current in the circuit I to the voltage

V, i.e. Power = I * V. For CMOS transistor the I-V characteristics describe earlier results in static

and dynamic power consumptions discussed in subsequent sections.

2.3.1) Static Power Consumption [11]: For CMOS inverters (Figure 6 b), during steady state, any

one of the transistors either PMOS or NMOS are always OFF and the other is ON because of

complement nature. This always breaks the direct contact from VDD to GND during the steady

state of the inverter. So, in any steady logic state, there is no dc path between VDD and GND and

this leaves steady state quiescent current to be zero. But, due to the reverse bias currents in the

transistor that is OFF, there are some leakage currents possible resulting in power consumption.

This is called static power consumption and is given as

B9�9;? G@:A = fWS} + f]VTK+f�S�N+ fNL�T (2.9)

Where I sub = subthreshold leakage current

I gate = gate leakage current

I junc = Junction leakge current

I cont = Contention current

2.3.2) Dynamic Power Consumption: The power consumed when a gate switches from logic level

high to low or vice versa is said to be dynamic power consumption. Dynamic power consumption

is mainly due to two factors: switching of load capacitances and short circuit current during

switching.

a) Switching Power: During switching activity, the power consumed with the output

capacitor charging and discharging is estimated by [11].

 ~W�UTN�U�] = h gJJ � >W� (2.10)

20

 >W� is switching frequency and is given in equation (2.11)

 >W� = � > (2.11)

Here α is called activity factor and f is the systems clock frequency.

b) Internal Short Circuit Current: During the switching of transistors, both the NMOS

and PMOS may be ON for a temporary time. This leads to a moment of circuit

current between VDD and GND, called the Crow-bar current [12]. Also, the

internal capacitance in P-MOS and N-MOS get charged and discharged leading to

some power loss. These factors result in short circuit current during switching.

 So, Dynamic Power = Switching Power + Short Circuit power.

Generally Short circuit power is neglected as it is mostly less than 10% of total

dynamic power.

2.4) Power Reduction Techniques [12] [13]:

2.4.1) Clock Gating: To avoid switching activity (dynamic power consumption), registers unused

are turn off by stopping the clock [12]. This saves the clock activity, eliminating switching activity

in the unused block. General clock gating technique is given in the figure. Clock gating technique

is one of the best way to reduce dynamic power.

INPUT

SS

Enable

Logic

CLK

Register
Combinational

Logic

Latch

Figure 7: Clock Gating Technique

21

2.4.2) Power Gating [13], [14]: Leakage power is dissipated by short circuit current during switch

activity and also in steady state mode. The leakage power is caused mostly by Igate and Isubt (gate

and sub threshold) leakage currents. This can be reduced by the idea of power gating. In power

gating technique, sleep transistors are used as switches for block of cells instead of individual gates

to turn of power to the block of cells. The sleep transistors are treated as either virtual VDD [12]

or virtual GND [13]. The outputs of block of cells are also sent to sleep mode to prevent invalid

logic levels passing on to next stage.

2.4.3) Disadvantages: Switching of sleep transistors during normal operation costs dynamic

power and voltage drop across the sleep transistor degrades performance of the design. The sleep

transistor power gating technique is given in the Figure 8.

Figure 8: Power Gating Technique

2.5) Pipelined vs Parallel Arithmetic Architecture:

Parallel processing architectures consist of multiple processing units interconnected. The parallel

processing architectures have the advantage of speed, but they require more hardware and results

in more area and power consumption. Parallel architectures are best used in getting high throughput

though the implementation results in high hardware cost. The parallel architecture approaches for

GND

Virtual VDD

Sleep

Sleep

Outputs Inputs
Block of

Cells

VDD

Figure 8: Power Gating Technique

22

FFT implementation are given in [5] and the parallel FFT architecture implemented using only

combinational circuits is given in [6]. During a pipelined arithmetic architecture, the arithmetic

operations are executed by an overlap operation in stages, where each stage executes an operation

that is required immediately for the next stage. Each stage is connected in a straight order to carry

out the instruction flow. High throughput with low latency and reduced hardware cost are the main

factors for the implementation of pipelined architecture. The pipelined stages with combinational

logic between registers gives the high throughput when clock period ‘T’ used for registers is as

small as possible. Pipeline efficiency is limited by register delay and the uneven time delays may

be possible between pipeline stages. Though FFT implementation using parallel architecture results

in faster computations, power consumption of large number of butterfly cores adds up resulting in

poor power efficiency [6]. On the other hand, pipelined architectures uses less hardware giving

better power efficiency.

23

CHAPTER III

IMPLEMENTATION

3.1) Design of Pipeline Architecture for FFT:

The GALS (Globally Asynchronous and Locally Synchronous) three stage pipelined hardware

architecture for the implementation of FFT is given in [18]. This pipeline structure constitutes of

three mux stages with twiddle factor multiplications in between two consecutive stages shown in

Figure 9.

Our work is focused on hardware realization and power estimation of the above pipelined

architecture using synchronous clocks and detailing methods for low power approaches. Five

pipelined stages that include three mux stages and two twiddle factor multiplication stages are used

Figure 9: Three stage Pipelined Architecture Design of FFT [adapted from [18]]

24

for the complete 8-point DIF-FFT computation. The block diagram for the five stage

implementation of 8-point FFT is shown in Figure 10. In Figure 10, the MUX stage performs the

mux operations in choosing right operands for complex floating point addition/subtraction and

MULT stage performs the complex multiplication between the twiddle factors (loaded from LUTs

or external registers) and operands.

 Figure 10: Block Diagram of 5-stage Pipelined Design in Computing FFT

3.2) Design of Butterfly Mux (MUX stage):

The proposed design for MUX Unit in Figure 9 takes eight IEEE single precision floating point

inputs fed serially one by one into the unit at each clock cycle. The first butterfly mux block is

shown in the Figure 8 and consists of a floating point add/sub unit which computes the complex

addition and subtraction on the correct operands. The design of floating point add/sub module is

discussed in the subsequent sections.

25

There are four feedback registers that help in storing the input operands until the matching

operands are reached at input of floating point ADD/SUB block. For example, the input x0 have to

be stored until x3 is reached at input side to perform floating point add/sub (x0 + x3, x0 - x3), and

the feedback registers helps in this delaying of inputs. The feedback registers are operated with a

clock mentioned “CLOCK” and supposed to be operated with time period represented as T. The

internal registers operates with a scaled clock time period T/4 and are represented as CLK. The

timing of clock cycles for both internal and external registers are to be properly synchronized to

avoid errors in calculation of complex addition and complex subtraction on the correct operands.

The clock synchronizing of internal and external registers plays an important role in giving the

correct output without errors. Figure 9 gives the clock scaling for the mux stage and also the

Control

Figure 11: First Mux Stage

26

synchronization of the selection line S1 of first two multiplexers A & B and control signal of

floating pointADD/SUB unit.

3.2.1) Control Logic for Butterfly Mux: The control logic for the operation of the above MUX

stage is given in the Table 6. The control signal ‘SWAP’ is the selection line on multiplexers in the

MUX stage that swaps the input operands to either the feedback registers or computing the floating

point arithmetic results to the next stage. The selection lines ‘S1’ on the multiplexers at the input

side selects either real or imaginary values of input. The ‘Swap1’, ‘Swap2’ & ‘Swap3’ signals are

the control signal of mux units in the first, second and third stages, respectively.

 Table 6: Synchronous clocks with varied time periods

negedge

(CLOCK/4) Select(S1)

0 0

0.25 1

0.5 0

0.75 1

negedge(CLOCK/2)

Add/Sub

control

0.5 0

1 1

CLK

Control = 0

Control = 1

S1 = 0

S1 = 1 S1= 1

CLOCK

Figure 12: Synchronization of Signals in Mux block

27

negedge (CLOCK) Swap1 Swap2 Swap3

0 0 X X

1 0 X X

2 0 X X

3 0 X X

4 0 X X

5 1 X X

6 1 X X

7 1 0 X

8 1 0 X

9 X 1 X

10 X 1 X

11 X 0 0

12 X 0 1

13 X 1 0

14 X 1 1

15 X X 0

16 X X 1

17 X X 0

18 X X 1

Table 7: Control Logic for Butterfly Mux (adapted from [19])

3.3) Design of Twiddle Factor Multiplication Block:

The twiddle factor multiplication stage multiplies the suitable twiddle factor constant values as

shown in Figure 10, with the outputs of the first stage. This stage makes use of an IEEE 754 floating

point multiplier and add/sub unit which are discussed later in this chapter. The registers denoted as

‘reg’ works with a clock period T/2. Therefore, three clocks with time periods T, T/2, T/4 are used

to operate the entire top level design. If (ar+ bi) is the complex number input, with (cr+di) being

a twiddle factor constant, this stage performs the complex multiplication between the complex input

and twiddle factor constant giving the output (ac-bd) as real part and (ad+bc) as the imaginary part.

It can be observed that this complex number multiplication requires total six floating point

operations to be performed (four multiplications {ac,bd,ad,bc}, one addition {ad +bc} and one

28

subtraction {ad-bc}). The two multiplexers at the input side in Figure 10 operate with same

selection lines as multiplexers A & B from Figure 8.

Figure 13: Twiddle Factor Multiplication Architecture

3.4) Floating Point Add/Sub Design:

A traditional floating point add/sub architectures used for Digital signal Processing is utilized for

this thesis [9]. The floating point add/sub block is designed using RTL Verilog for the present

design and the logic is given in the next sections.

3.4.1) Sign Logic: Using two 32 bit floating point numbers, the most significant bit (32nd) bit is the

sign bit of the operands. Based on the sign bit of two operands and the control signal to add/subtract,

we can use ‘XOR’ gate to perform an actual add/sub operation [20].

29

Operand

A-Sign

Operand

B-Sign

Control

C

Condition

Result

XOR of A,B,C

Sign of Output

+ + Add + Addition + +

+ - Add + Subtraction - Greater sign

- + Add + Subtraction - Greater sign

- - Add + Addition + -

+ + Sub - Subtraction - Greater sign

+ - Sub - Addition + +

- + Sub - Addition+ -

- - Sub - Subtraction- Greater sign

Table 8: Logic for Actual Floating Point Add/Sub and Sign Output

3.4.2) Equaling Exponents and Mantissa Shifting: The next step is to obtain the greater of the

two operands for an actual floating point subtraction operation. This is done by comparing the

exponents and mantissas of each operand and unpack the sign of greater operand. The sign of the

greater operand helps in deciding the output sign when actual floating point subtraction is

performed. If the exponents are not equal, the difference between the exponents is calculated and

the smaller mantissa is shifted towards right to the count equal to difference of exponents.

Generally, barrel shift registers are used to shift the mantissa in floating point arithmetic. Barrel

shift registers can shift the required number of digits in one clock cycle, however, they pose the

problem of hardware and power consumption as described in [18] [20]. Therefore, for a low

power implementation of a floating point add/sub module, single shift registers can be used [20].

For the present design implementation, the shift is described in RTL Verilog and the synthesis

tool performs the necessary gate level implementation of shifting.

30

3.4.3) Addition and Normalization on Mantissas: An addition/subtraction operation is done on the

mantissas once the exponents are made equal. Normalization of addition result is simple

compared to subtraction and always falls into two scenarios, that is, either a carryout generated by

an addition or not. If the carry out is generated, carry is discarded and the remaining bits becomes

resultant mantissa. If the carry is not generated the bits after the most significant 1 becomes

output mantissa. This reduces the burden of normalization in addition as the search for most

significant ‘1’is easy and is available readily in first two MSB places.

3.4.4) Subtraction and Normalization on Mantissas: For subtraction, the resultant mantissas may

have the significant 1 in any one of the 27 bit positions (normalizing 1 bit, 23 bits mantissa, extra

3bits). The extra 3 bits here, a guard bit, round bit and sticky bit needed for rounding and

precision [20]. Finding the leading 1 for normalization of subtraction result, is a complicated

function and a leading zero detector (LZD) is generally used to detect this leading ‘1’ bit in the

result. More efficient algorithms available for LZD designs [21] can be employed while designing

floating point add/sub units for optimum performance.

The resultant mantissa must be normalized by left shift until the leading ‘1’ is made the

most significant bit. The count of left shifting is subtracted from the output exponents to get the

final result of exponent. This gives the final normalized mantissa and final result of exponent in

subtraction. The sign bit of output is calculated from the condition of addition/subtraction and the

greater operand sign while comparing the exponents and mantissas. The advanced approaches for

designing low power floating point add/subtract units which makes FFT computation more power

efficient are found in [22][23].

3.5) Floating Point Multiplication [20]: Architecture of floating point multiplication unit is also a

key factor in deciding performance of the entire FFT. The floating point multiplication for the thesis

is implemented in a traditional way described as follows:

31

3.5.1) Output Sign: The sign bit output when two floating point numbers are multiplied is the XOR

of sign bits of the input operands.

3.5.2) Output Exponent: When two floating point numbers are multiplied, the resultant exponent

is the sum of exponents of input operands. As the exponent in floating point representation is biased

to decimal 128 (binary 8’b01111111), the addition of two floating point exponents adds the biasing

value twice and care must be taken to remove the double biasing addition. Therefore, the exponent

of the operands when added, the output result is subtracted with 128 (8’b01111111) to cancel the

double addition of biasing value 128.

3.5.3) Output Mantissa: The mantissas of input operands are multiplied using 24*24 bit multiplier.

The 24 bits of each operand include the normalizing bit 1’ and the actual 23 mantissa bits of input

operand. When two 24 bit operands are multiplied, the resultant product is a 48 bit binary output

which determines the final mantissa and exponent. If the 47th bit in the product is ‘1’ the final output

mantissa is [46:24], else it is [45:23], the remaining lower order 23 bits [22:0] are neglected to

preserve the floating point format though the product loose it’s precision. If the 47th bit is 1, the

exponent is increased by 1, otherwise the exponent remains the same as it is calculated in the

previous step. If the input is given as all 0’s, the design uses the proper exponent value to preserve

the value of exponent biasing.

32

CHAPTER IV

RESULTS

4.1) RTL Description of the Design: All the stages of the hardware architecture presented in

Chapter 3 are implemented in the Verilog hardware description language following the IEEE

Verilog standard 1364-2005 [35]. The test bench for the design written in Verilog includes all the

control logic for SWAP control, Select S1, S2, S3 signals of mux blocks in three stages and clock

timing of the circuit. The switching activity information required for the power calculation is

captured using a .vcd file while testing the design using a test bench.

4.2) Waveform & Simulation Results: Mentor Graphics Model Sim software [32] is used for the

simulation and logical verification of the design. The output simulation waveform for a set of

sample test vectors (show in hexadecimal format) is given in the Figure 14. The inputs and

corresponding outputs obtained are shown in Table 8 and are compared with MATLAB outputs.

33

Figure 14: Simulation Output Waveform of the Design

34

Test Inputs Design Simulation outputs MATLAB outputs

32'h40000000 + 32'h40800000 i

(2+4i)

32'h3f800000 + 32'hc0400000 i

(1-3i)

32'h40e00000 + 32'h41A80000 i

(7+21i)

32'h41700000 + 32'h40A00000 i

(15+5i)

32'h41400000 + 32'h41000000 i

(12+8i)

32'h41D00000 + 32'hC1F80000 i

(26-31i)

32'hC0800000 + 32'hC1100000 i

(-4.0 -9.0i)

32'hC1200000 + 32'hC1A80000 i

(-10.0 -21.0i)

32'h42440000 + 32'hC1D00000 i

(49-26i)

32'hC1700000 + 32'h42940000 i

(-15+74i)

32'hC0E00000 + 32'hC1B00000 i

(-7-22i)

32'h41E80000 + 32'h41B00000 i

(29+22i)

32'h41B6A09F+ 32'hC1595f64 i

(22.828428 -13.585789i)

32'h41895f61 + 32'hC183504E i

(17.171572-16.414211i)

32'h42062808 + 32'h40B2BEC4 i

(33.539093+5.585787i)

32'hC2E31404 + 32'h4106A09E i

(-113.53909+8.414213i)

49.00 – 26.00i

-15.00+74.00i

-7.00 - 22.00i

29.00+22.00i

22.83 -13.59i

17.17-16.41i

33.54+5.59i

-113.54+8.41i

Table 8: Design Outputs Compared with MATLAB Results

4.3) Synthesis with Design Compiler:

The Synopsys® Design Compiler ™ [34] is used to synthesis and optimize the RTL high level

description of the design. The RTL is top-down compiled using the Design Compiler. Pre-defined

Standard library Cells ‘gscl45nm’ [27] is used to compile the design. The gate level net list

generated is tested using the test bench. The frequency of the design is limited between 20 to 30

MHz and is primarily dependent on the frequency of functional blocks that are floating point

add/sub and multiplication units in the design. Power reports of the design are generated by

monitoring the switching activity of the design using the VCD file. The design is expected to run

with greater performance and better power efficiency when a low power floating point adder and

multiplier designs are utilized [25] [26].

35

4.4) Power Estimation with Synopsys Primetime [33]:

Synopsys Prime time tool is used to estimate the static and dynamic power consumption of the

design. The switching activity of the design is obtained as follows

4.4.1) VCD (Value Change Dump) File for Switching Activity: The change in the values of the

signals in the design can be captured using the $dumpvar Verilog Task function in Test bench.

While running the test simulation of the design, the VCD file captures the time and value of the

transition that occurs in signals in the design. The VCD file has the information for the toggling

activity of all signals and also the time when the toggling occurs. This file is used in Synopsys®

Prime Time™ to read the toggling activity of net lists into the tool for calculating power consumed

during dynamic switching of the cells in the design.

Also, the switching activity of the design is monitored by giving 500 test vectors to the test

bench. The 500 test vectors are randomly generated using a C programming and the code used for

generating random test vectors is given in appendix.

4.4.2) SAIF (Switching Activity Interchange Format): The Switching activity file gives almost the

same information as VCD file except that a SAIF file does not record the dynamic timing when the

toggling activity occur. SAIF files captures only the switching activity and duration of switching,

thus calculating only average power. Synopsys Prime time tool handles both VCD and SAIF files

for power optimization and timing analysis.

4.5) Library Specifications and Operating Conditions:

Synopsys Design compiler [33] is utilized to generate a gate level net list of the design. The

technology library used for logical mapping of the design is gscl45nm and the attributes of the

library are given below.

36

4.5.1) Library Unit Attributes:

Time unit: “1nano second”

Voltage unit: “1Volt”

Current Unit: “1 micro Ampere”

Pulling resistance unit: “1kohm”

Dynamic Power unit: “1 milli watt”

Leakage Power unit: “1nano watt”

Capacitive load unit: “1 pico farad”

4.5.2) Operating Conditions:

Voltage = 1.1 Volts

Temperature = 27

4.6) Power Report:

Cell Internal Power = 6.4694 mW (54%)

Net Switching Power = 5.4361 mW (46%)

Total Dynamic Power = 11.9055 mW (100%)

Cell Leakage Power = 102.9736 uW

4.7) Power Comparison: Power results for the given pipelined architecture are compared with a

parallel architecture in [16] and are given Table 10. It can be observed from Table 10 that the power

efficiency is 10 times better compared to the parallel and combinational architecture in [16]. More

importantly, optimized and low power results can be achieved by using power efficient floating

point add/sub [23] [24] and multiplication blocks [25] [26] within the pipelined design.

37

Table 10: Power Results Compared with Earlier Designs

4.8) Performance Comparison: The latency of the presented pipelined design for an N point is

estimated by generating a formula for total number of clock cycles required in complete

computation of N point FFT . The equation formulated is given in (4.1)

�@9�= ?=@?� ?D?=B >@A � G@;
9 ��� = 2 ∗ (� + =@i� � − 1) (4.1)

Input points 8 Point

16

Point

32

Point

64

Point

128

Point

256

Point

512

Point

1024

Point

Stage Number Clock Cycles required at each decimation stage

Stage 10 1

Stage 9 1 2

Stage 8 1 2 4

Stage 7 1 2 4 8

Stage 6 1 2 4 8 16

Stage 5 1 2 4 8 16 32

Stage 4 1 2 4 8 16 32 64

Stage 3 1 2 4 8 16 32 64 128

Stage 2 2 4 8 16 32 64 128 256

Stage 1 4 8 16 32 64 128 256 512

Stage 0 8 16 32 64 128 256 512 1024

Twiddle stages 2 3 4 5 6 7 8 9

Mux stages 3 4 5 6 7 8 9 10

Total Clock Cycles

required 20 38 72 138 268 526 1040 2066

Table 11: Clock Latency for Higher Point FFTs

 Simple FFT [16] Low power FFT [16]

(mw)

Pipelined FFT

(mw)

Cell internal Power 428.5302 mw 68.4336 mw 6.4694 mw

Net Switching power 309.0902 mw 44.6828 mw 5.4361 mw

Total Dynamic Power 737.62 mw 113.1164mw 11.905 mw

38

From Table 11, the total clock latency of a 1024 point FFT is 2,066 clock cycles which is efficient

when compared to the designs given in [28] with latency 5,220 clock cycles. Though the frequency

of operation in [28] is greater (100 MHz) compared to the presented design, the total performance

of the design in [28] lags because of the greater computation cycles utilized. The performance

comparison for both designs is given in Table 11 expecting the pipelined design to run at the same

frequency as in [28]. The formula of processing time for computation given in Equation (4.2).

~A>@AE�
? = �VTK�N� U� NQLN� N�NQKW
YIK�SK�N� LM LPKIVTUL� (4.2)

 Traditional FFT

processors

FFT processors in

[28]

Pipelined FFT processor

Frequency ≥ 100 MHz ≥ 150 MHz ≥ 150 MHz (if expected)

Number of cycles 10240 5220 2066

Processing time 102.4 µs 34. 8 µs 13.77 µs

Table 12: Performance Comparison to Previous Design.

Better processing times can be achieved for the current design if the frequency of the design is

improved by improving the speeds of floating point arithmetic units.

39

CHAPTER V

CONCLUSION

This thesis presents the hardware realization of synchronous design for floating point FFT

computation that consumes less power than the parallel architecture in [16]. The clock latency of

the proposed design is very efficient computing the complete 1024 point FFT in 2066 clock cycles

compared to that in [28]. Future work can be address the power consumption of the overall

architecture by designing a control unit which monitors and stops the underlying unnecessary

computations when the design is not in use. Clock gating techniques and power gating techniques

given in [13] [14] can also be implemented to reduce the switching activity of the design as this

significantly reduces the dynamic power consumption. Using power efficient functional blocks

such as low power dual path floating point fused addition/subtraction in [22] [23] [24] and low

power floating multiplication units in [25] [26], the design can be further improved for better

performance and power efficiency.

40

REFERENCES

[1] P.Lynn and W.Fuerst, Introductory digital signal processing with computer applications.

Chichester: Wiley, 1989.

[2] W.Kester, Mixed-signal and DSP design techniques. Amsterdam: Newnes, 2003.

[3] W.Smith and J.Smith, Handbook of real-time fast Fourier transforms. New York: IEEE

Press, 1995.

[4] Fftw.org, 'FFTW Home Page', 2015. [Online]. Available: http://www.fftw.org/. [Accessed:

09- Nov- 2015].

[5] D.Orozco, L.Xue, M.Bolat, X.Li and G.Gao, 'Experience of Optimizing FFT on Intel

Architectures', 2007 IEEE International Parallel and Distributed Processing Symposium,

2007.

[6] Texas Instruments, 'FFT Implementation on the TMS320VC5505, TMS320C5505, and

TMS320C5515 DSPs', Texas Instruments, 2013.

[7] '754-2008', 754-2008 - IEEE Standard for Floating-Point Arithmetic, no. 978-0-7381-

6981-1, pp. 1 - 82, 2008.

[8] S.Smith, The scientist and engineer's guide to digital signal processing. [San Diego, Calif.]:

California Technical Pub., 2002.

[9] Wikipedia, 'Logic family', 2015. [Online]. Available:

https://en.wikipedia.org/wiki/Logic_family.

[10] N.Weste, D.Harris and N.Weste, CMOS VLSI design. Boston: Pearson/Addison-Wesley,

2005.

[11] V.D.Agrawal and R.Srivaths, 'Low-Power Design and Test, Dynamic and Static Power in

CMOS', Hyderabad, July 30-31 2007, 2007.

41

[12] J.Stine, 'VLSI Digital System Design', Oklahoma State University, 2013.

[13] E.Macii, L.Bolzani, A.Calimera, A.Macii and M.Poncino, 'Integrating Clock Gating and

Power Gating for Combined Dynamic and Leakage Power Optimization in Digital CMOS

Circuits', 2008 11th EUROMICRO Conference on Digital System Design Architectures,

Methods and Tools, 2008.

[14] Changbo Long and Lei He, 'Distributed sleep transistor network for power reduction', IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 9, pp. 937-946,

2004.

[15] Lehigh University Lehigh Preserve, 'Parallel FFT algorighms and architectures by

Xiaofeng Pen', Lehigh University, 2015.

[16] U.Ghate, A.Gurjar and V.Ghate, 'Power optimization of single precision floating point FFT

design using fully combinational circuits', 2013 15th International Conference on Advanced

Computing Technologies (ICACT), pp. 1-5, 2013.

[17] C.Ramamoorthy and H.Li, 'Pipeline Architecture', CSUR, vol. 9, no. 1, pp. 61-102, 1977.

[18] K.Dabbagh-Sadeghipour and M.Eshghi, 'A self-timed, pipelined floating point FFT

processor architecture', SCS 2003. International Symposium on Signals, Circuits and

Systems. Proceedings (Cat. No.03EX720), 2003.

[19] J.Stine, 'IEEE 754 Single precision FFT', Oklahoma State University, 2013.

[20] B.Parhami, Computer arithmetic. New York: Oxford University Press, 2000.

[21] G.Dimitrakopoulos, K.Galanopoulos, C.Mavrokefalidis and D.Nikolos, 'Low-Power

Leading-Zero Counting and Anticipation Logic for High-Speed Floating Point Units', IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 7, pp. 837-850,

2008.

[22] J.Min, J.Sohn and E.Swartzlander, 'A low-power dual-path floating-point fused add-subtract

unit', 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems

and Computers (ASILOMAR), 2012.

[23] R.Pillai, D.Al-Khalili and A.Al-Khalili, 'A low power approach to floating point adder

design', Proceedings International Conference on Computer Design VLSI in Computers and

42

Processors, 1997.

[24] S.Kukati, D.Sujana, S.Udaykumar, P.Jayakrishnan and R.Dhanabal, 'Design and

implementation of low power floating point arithmetic unit', 2013 International Conference

on Green Computing, Communication and Conservation of Energy (ICGCE), 2013.

[25] H.Zhang, W.Zhang and J.Lach, 'A low-power accuracy-configurable floating point

multiplier', 2014 IEEE 32nd International Conference on Computer Design (ICCD), 2014.

[26] N.Babu and R.Sarma, 'A novel low power and high speed Multiply-accumulate (MAC) unit

design for floating-point numbers', 2015 International Conference on Smart Technologies

and Management for Computing, Communication, Controls, Energy and Materials

(ICSTM), 2015.

[27] Eda.ncsu.edu, 'FreePDK - NCSU EDA Wiki', 2015. [Online]. Available:

http://www.eda.ncsu.edu/wiki/FreePDK.

[28] S.Mou and X.Yang, 'Design of a High-speed FPGA-based 32-bit Floating-point FFT

Processor', Eighth ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007), 2007.

[29] K.Lasith and A.Thomas, 'Efficient implementation of single precision floating point

processor in FPGA', 2014 Annual International Conference on Emerging Research Areas:

Magnetics, Machines and Drives (AICERA/iCMMD), 2014.

[30] J.Cooley and J.Tukey, 'An Algorithm for the Machine Calculation of Complex Fourier

Series', Mathematics of Computation, vol. 19, no. 90, p. 297, 1965.

[31] Mathworks.com, 'MATLAB - The Language of Technical Computing', 2015. [Online].

Available: http://www.mathworks.com/products/matlab/.

[32] Altera.com, 'ModelSim-Altera Software', 2015. [Online]. Available:

https://www.altera.com/products/design-software/model---simulation/modelsim-altera-

software.tablet.html.

[33] Synopsys, 'Synopsys PrimeTime', 2015. [Online]. Available:

http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx.

[34] Synopsys, 'Design Compiler - Synopsys', 2015. [Online]. Available:

43

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/def

ault.aspx.

[35] IEEE Member Digital Library', IEEE Transactions on Power Electronics, vol. 19, no. 5, pp.

1364-1364, 2004.

44

APPENDICES

A-1) Verilog design of floating point multiplication:

module spmult (out,a,b);

output [31:0]out;

wire [31:0]spproduct; // output declaration of 32 bit number

input [31:0]a,b; // input declarations of two 32 bit numbers

// internal nets

wire [47:0]prtemp; //temporary net used for storing 48bits in the product before truncation

wire [7:0]pexptemp; //temporary exponent used before checking the most significand bit in the

product

//RTL Verilog code using ASSIGN statememts only

assign spproduct[31] = a[31] ^ b[31]; // sign bits of inputs are operated seperately to get the sign

bit of product

assign pexptemp = a[30:23] + b[30:23] - 8'b01111111; // extra bias (127) that is added twice is

removed once to get the actual bias

assign prtemp[47:0] = {1'b1,a[22:0]} * {1'b1,b[22:0]}; // 1 is appended to the 23 bit mantissas to

multiply the significands perfectly and get the 48bit result

assign spproduct[22:0] = prtemp[47]==1'b1 ? prtemp[46:24] : prtemp[45:23];//if 47th position(i.e

48th bit) is 1,mantissa is from 46 to 24 positions else 45 to 23

assign spproduct[30:23] = prtemp[47]==1'b1 ? pexptemp+1'b1 : pexptemp; //if 48th bit in the

product is 1,47th bit is shifted to after the floating point, hence exp increased by 1y

assign

out[31:0]=(a==32'h00000000)?32'h01800000:(b==32'h00000000)?32'h01800000:spproduct[31:0

];

endmodule

45

A-2) Verilog design of floating point ADD/SUB :

module subadd(out,a,b,cntrl); //toplvl module

output [31:0]out; //final ouptut

input [31:0]a,b; //input IEEE 754 numbers

input cntrl; //cntrl 0_adds 1_subtracts

wire cndtn,sign; //actual add or sub

wire [31:0] grt,smll;

wire [7:0] preexp,nadexp,nsbexp;

wire [27:0]add,sub,nrmsm;

wire [22:0]nrmam;

wire [23:0]newm;

expshift t(grt[31:0],smll[31:0],preexp[7:0],a[31:0],b[31:0],sign); //exponent comparisionn

shift s(newm[23:0],grt[30:23],smll[30:23],smll[22:0]);//shifting exponents

addition d(add[27:0],{1'b1,grt[22:0]},newm[23:0]);//addition without normalizing

subtraction q(sub[27:0],grt[22:0],newm[23:0]); //subtraction without normalizing

normaladd an(nrmam,nadexp,add[27:0],preexp[7:0]); //normalizing addition output

normalsubs sb(nrmsm,nsbexp,sub[27:0],preexp[7:0]);//normalizing subtraction output

assign cndtn=cntrl^a[31]^b[31];//xor operation tells whether actually to add or subtract

assign out[22:0]=cndtn?nrmsm[27:5]:nrmam[22:0];//assigning mantissa according to condtn

assign out[30:23]=cndtn?nsbexp[7:0]:nadexp[7:0];//assigning exponents according to condtn

//logic used to get the sign bit when subtraction is done

assign out[31]=(cntrl==1'b0)?grt[31]:(a[31]==1'b0 && b[31]==1'b1)?1'b0:(a[31]==1'b1 &&

b[31]==1'b0)?1'b1:(a[31]&&b[31]&&sign)?1'b0:(a[31]==1'b0 && b[31]==1'b0 &&

sign==1'b0)?1'b0:1'b1;//sign is always greater number sign

endmodule

//comparing the exponents for further shifting

module expshift(grt,smll,reexp,a,b,sign);

input [31:0]a,b;

output[31:0]grt,smll;

output [7:0]reexp;

output sign;

assign smll[31:0]=(a[30:0]<b[30:0])?a:b;

assign grt[31:0]=(a[30:0]>b[30:0])?a:b;

assign reexp[7:0]=grt[30:23];

assign sign=(grt[31:0]==a[31:0])?1'b0:1'b1;

endmodule

//shfting exponents

module shift(newm,grtexp,smllexp,smm);//equaling the exponents

input [22:0]smm;

input [7:0]grtexp,smllexp;

output [23:0]newm;

46

wire [31:0]count;

assign count=grtexp-smllexp; //count is used to shift the mantissa and make expopents equal

assign newm[23:0]={1'b1,smm[22:0]}>>count;//shifting the mantissas to equalize exponents

endmodule

//module for adding mantissa

module addition(outadd,a,b);

output [27:0]outadd;

input [23:0]a,b;

assign outadd[27:0]={a[23:0],3'h0}+{b[23:0],3'h0};

endmodule

//subtraction operation

module subtraction(outsub,a,b);

output[27:0]outsub;//output

input [22:0]a;//input mantissas (equal exponents)

input [23:0]b;

wire [27:0]reneg;//28th bit to check whether the result is negative

wire [27:0]tempaa;

assign reneg[27:0]={1'b0,1'b1,a[22:0],3'b0}-{1'b0,b[23:0],3'b0};

assign tempaa=0-reneg[27:0];//twos complement of result

assign outsub=(reneg[27]==1'b1)?tempaa:reneg[27:0];//twoscomplement is output if result is -

endmodule

//normalizing the sum mantissa

module normaladd (newam,newaexp,oldman,oldexp);

output [22:0]newam;

output [7:0]newaexp;

input [27:0]oldman;

input [7:0]oldexp;

assign newam[22:0]=(oldman[27]==1'b1)?oldman[26:4]:oldman[25:3];

assign newaexp=(oldman[27]==1'b1)?oldexp+1:oldexp;//increasing the exponent

endmodule

//normalizing the subtraction mantissas

module normalsubs(newman,newexp,inman,oldexp);

output [7:0]newexp;

output [27:0]newman;

input [27:0]inman;

input [7:0]oldexp;

assign

newman[27:0]=(inman[27]==1'b1)?inman[27:0]<<32'd1:(inman[26]==1'b1)?inman[27:0]<<32'd

2:(inman[25]==1'b1)?inman[27:0]<<32'd3:(inman[24]==1'b1)?inman[27:0]<<32'd4:(inman[23]=

=1'b1)?inman[27:0]<<32'd5:(inman[22]==1'b1)?inman[27:0]<<32'd6:(inman[21]==1'b1)?inman[

47

27:0]<<32'd7:(inman[20]==1'b1)?inman[27:0]<<32'd8:(inman[19]==1'b1)?inman[27:0]<<32'd9:(

inman[18]==1'b1)?inman[27:0]<<32'd10:(inman[17]==1'b1)?inman[27:0]<<32'd11:(inman[16]=

=1'b1)?inman[27:0]<<32'd12:(inman[15]==1'b1)?inman[27:0]<<32'd13:(inman[14]==1'b1)?inma

n[27:0]<<32'd14:(inman[13]==1'b1)?inman[27:0]<<32'd15:(inman[12]==1'b1)?inman[27:0]<<3

2'd16:(inman[11]==1'b1)?inman[27:0]<<32'd17:(inman[10]==1'b1)?inman[27:0]<<32'd18:(inma

n[9]==1'b1)?inman[27:0]<<32'd19:(inman[8]==1'b1)?inman[27:0]<<32'd20:(inman[7]==1'b1)?in

man[27:0]<<32'd21:(inman[6]==1'b1)?inman[27:0]<<32'd22:(inman[5]==1'b1)?inman[27:0]<<3

2'd23:(inman[4]==1'b1)?inman[27:0]<<32'd24:(inman[3]==1'b1)?inman[27:0]<<32'd25:(inman[

2]==1'b1)?inman[27:0]<<32'd26:(inman[1]==1'b1)?inman[27:0]<<32'd27:32'd0;

assign

newexp[7:0]=(inman[27]==1'b1)?oldexp+32'd1:(inman[26]==1'b1)?oldexp:(inman[25]==1'b1)?o

ldexp-32'd1:(inman[24]==1'b1)?oldexp-32'd2:(inman[23]==1'b1)?oldexp-

32'd3:(inman[22]==1'b1)?oldexp-32'd4:(inman[21]==1'b1)?oldexp-

32'd5:(inman[20]==1'b1)?oldexp-32'd6:(inman[19]==1'b1)?oldexp-

32'd7:(inman[18]==1'b1)?oldexp-32'd8:(inman[17]==1'b1)?oldexp-

32'd9:(inman[16]==1'b1)?oldexp-32'd10:(inman[15]==1'b1)?oldexp-

32'd11:(inman[14]==1'b1)?oldexp-32'd12:(inman[13]==1'b1)?oldexp-

32'd13:(inman[12]==1'b1)?oldexp-32'd14:(inman[11]==1'b1)?oldexp-

32'd15:(inman[10]==1'b1)?oldexp-32'd16:(inman[9]==1'b1)?oldexp-

32'd17:(inman[8]==1'b1)?oldexp-32'd18:(inman[7]==1'b1)?oldexp-

32'd19:(inman[6]==1'b1)?oldexp-32'd20:(inman[5]==1'b1)?oldexp-

32'd21:(inman[4]==1'b1)?oldexp-32'd22:(inman[3]==1'b1)?oldexp-

32'd23:(inman[2]==1'b1)?oldexp-32'd24:(inman[1]==1'b1)?oldexp-

32'd25:(inman[0]==1'b1)?oldexp-32'd26:8'b00000000;

endmodule

A-3) Verilog design of first MUX Stage

//module of first mux unit first stage

module firstmux(ar,ai,cr,ci,select,swap1,reset,cntrl,clock,clck);

output [31:0]cr,ci; //outputs of first mux

input [31:0]ar,ai; //inputs to first mux

input select,swap1; //selection lines that control simple 2x1 muxes used in MUX unit

input reset; //reset pin of all the flipflops used

input clock,clck; //clockr operates on real values, clockc on imaginary and clck on internal regs

input cntrl; //cntrl is when to add or when to subtract

wire [31:0]ar1,ac1,br,bi,p,q,r,dr,di,q1,q2,q3,q4,d1r,d2r,d3r,d1c,d2c,d3c,cr1,ci1; //intermediate

outputs joined as wire between blocks

//simple muxes used (4 totally)

assign dr=(swap1==1'b1)?q2:ar1;

assign di=(swap1==1'b1)?q1:ac1;

assign cr1=(swap1==1'b1)?q4:br;

48

assign ci1=(swap1==1'b1)?q3:bi;

assign p=(select==1'b1)?ac1:ar1;

assign q=(select==1'b1)?bi:br;

subadd t1(r,q,p,cntrl);

//input flipflops

D_flpflop arin(ar,ar1,clock,reset);

D_flpflop acin(ai,ac1,clock,reset);

//internal Feed back registers

//feedbackr sum_diff(r,q4,reset,clck,q1,q2,q3);

D_flpflop am(r,q1,clck,reset);

D_flpflop an(q1,q2,clck,reset);

D_flpflop ap(q2,q3,clck,reset);

D_flpflop aq(q3,q4,clck,reset);

//External feed back registers real

//feedbackr extr(dr,br,reset,clock,d1r,d2r,d3r);

D_flpflop er1(dr,d1r,clock,reset);

D_flpflop er2(d1r,d2r,clock,reset);

D_flpflop er3(d2r,d3r,clock,reset);

D_flpflop er4(d3r,br,clock,reset);

//External feedback registers - imaginary

//feedbackr exti(di,bi,reset,clock,d1c,d2c,d3c);

D_flpflop ei1(di,d1c,clock,reset);

D_flpflop ei2(d1c,d2c,clock,reset);

D_flpflop ei3(d2c,d3c,clock,reset);

D_flpflop ei4(d3c,bi,clock,reset);

//output fliflops

D_flpflop cre(cr1,cr,clock,reset);

D_flpflop cim(ci1,ci,clock,reset);

endmodule

A-4) Verilog design of Second MUX Stage:

//module of second mux unit second stage

module secondmux(ar,ai,cr,ci,select,swap2,reset,cntrl,clock,clck);

output [31:0]cr,ci; //outputs of first mux

input [31:0]ar,ai; //inputs to first mux

input select,swap2; //selection lines that control simple 2x1 muxes used in MUX unit

input reset; //reset pin of all the flipflops used

49

input clock,clck; //clockr operates on real values, clockc on imaginary and clck on internal regs

input cntrl; //cntrl is when to add or when to subtract

wire [31:0]ar1,ac1,br,bi,p,q,r,dr,di,q1,q2,q3,q4,d1r,d2r,d3r,d1c,d2c,d3c,cr1,ci1; //intermediate

outputs joined as wire between blocks

//registers before mux starting that takes in input ai and ar

D_flpflop arin(ar,ar1,clock,reset);

D_flpflop acin(ai,ac1,clock,reset);

//simple muxes used (4 totally)

assign p=(select==1'b1)?ac1:ar1;

assign q=(select==1'b1)?bi:br;

//internal serial registers working on clck (high frequency) to store add/sub real/cmp values

subadd t1(r,q,p,cntrl);

//feedbackr sum_diff(r,q4,reset,clck,q1,q2,q3);

D_flpflop am(r,q1,clck,reset);

D_flpflop an(q1,q2,clck,reset);

D_flpflop ap(q2,q3,clck,reset);

D_flpflop aq(q3,q4,clck,reset);

//one adder/subtractor used

assign dr=(swap2==1'b1)?q2:ar1;

assign di=(swap2==1'b1)?q1:ac1;

assign cr1=(swap2==1'b1)?q4:br;

assign ci1=(swap2==1'b1)?q3:bi;

//muxes at the inputs using selection

//smplemux ia(ar1,ac1,p,select);

//smplemux ib(br,bi,q,select);

//feed back flipflops (2 in number)

D_flpflop er1(dr,d1r,clock,reset);

D_flpflop er2(d1r,br,clock,reset);

//feedback registers imaginary

D_flpflop ei1(di,d1c,clock,reset);

D_flpflop ei2(d1c,bi,clock,reset);

//for complex values

//registers used to store the output values after first stage

D_flpflop cre(cr1,cr,clock,reset);

D_flpflop cim(ci1,ci,clock,reset);

endmodule

A-5) Verilog design of third MUX Stage:

//module of third mux unit third stage

module thirdmux(ar,ai,cr,ci,select,swap3,reset,cntrl,clock,clck);

50

output [31:0]cr,ci; //outputs of third mux

input [31:0]ar,ai; //inputs to third mux

input select,swap3; //selection lines that control simple 2x1 muxes used in MUX unit

input reset; //reset pin of all the flipflops used

input clock,clck; //clockr operates on real values, clockc on imaginary and clck on internal regs

input cntrl; //cntrl is when to add or when to subtract

wire [31:0]ar1,ac1,br,bi,p,q,r,dr,di,q1,q2,q3,q4,d1r,d2r,d3r,d1c,d2c,d3c,cr1,ci1; //intermediate

outputs joined as wire between blocks

//registers before mux starting that takes in input ai and ar

D_flpflop arin(ar,ar1,clock,reset);

D_flpflop acin(ai,ac1,clock,reset);

//simple muxes used

assign dr=(swap3==1'b1)?q2:ar1;

assign di=(swap3==1'b1)?q1:ac1;

assign cr1=(swap3==1'b1)?q4:br;

assign ci1=(swap3==1'b1)?q3:bi;

assign p=(select==1'b1)?ac1:ar1;

assign q=(select==1'b1)?bi:br;

//feedbackr sum_diff(r,q4,reset,clck,q1,q2,q3);

//internal serial registers working on clck (high frequency) to store add/sub real/cmp values

D_flpflop am(r,q1,clck,reset);

D_flpflop an(q1,q2,clck,reset);

D_flpflop ap(q2,q3,clck,reset);

D_flpflop aq(q3,q4,clck,reset);

//one adder/subtractor used

subadd t1(r,q,p,cntrl);

//registers used to store the output values after third stage

D_flpflop cre(cr1,cr,clock,reset);

D_flpflop cim(ci1,ci,clock,reset);

//External feed back registers

D_flpflop fdb3a(dr,br,clock,reset);

D_flpflop fdb3b(di,bi,clock,reset);//for complex values

endmodule

A-6) Verilog design of 1st Twiddle Factor Multiplication stage

module mult1(ar,ai,outmr,outmi,clock,clckm,clck,mcntrl,sltm,sltn,selectm,reset,prod,m1,m2,sb1);

input [31:0]ar,ai;

input [2:0]selectm;

input clock,clck,clckm,mcntrl,reset;

output [31:0]outmr,outmi;

input sltm,sltn;

51

inout [31:0]prod,m1,m2,sb1;

wire [31:0] c,d,in1,in2;

reg [31:0] w80r=32'h3f800000,w80c=32'h00000000,

w81r=32'h3f800000,w81c=32'h00000000,

 w82r=32'h3f800000, w82c=32'h00000000,

 w83r=32'h3f800000, w83c=32'h00000000,

 w84r=32'h3f800000, w84c=32'h00000000,

 w85r=32'h3f3504f3, w85c=32'hbf3504f3,

w86r=32'h00000000, w86c=32'hbf800000,

 w87r=32'hbf3504f3, w87c=32'hbf3504f3;

assign

c[31:0]=(selectm==3'b000)?w80r:(selectm==3'b001)?w81r:(selectm==3'b010)?w82r:(selectm==

3'b011)?w83r:(selectm==3'b100)?w84r:(selectm==3'b101)?w85r:(selectm==3'b110)?w86r:(selec

tm==3'b111)?w87r:32'h00000000;

 assign

d[31:0]=(selectm==3'b000)?w80c:(selectm==3'b001)?w81c:(selectm==3'b010)?w82c:(selectm==

3'b011)?w83c:(selectm==3'b100)?w84c:(selectm==3'b101)?w85c:(selectm==3'b110)?w86c:(sele

ctm==3'b111)?w87c:32'h00000000;

 assign in1[31:0]=(sltm==1'b0)?ar[31:0]:ai[31:0];

 assign in2[31:0]=(sltn==1'b0)?c[31:0]:d[31:0];

//combinational multiplication block used

spmult sr(prod,in1,in2);

//intermediate products stored

D_flpflop min1(prod,m1,clck,reset);

D_flpflop min2(m1,m2,clck,reset);

//combinational add/sub unit

subadd s1(sb1,m2,m1,mcntrl);

//Dflipflops that store output values

D_flpflop dl(sb1,outmi,clckm,reset);

D_flpflop d2(outmi,outmr,clckm,reset);

Endmodule

A-7) Verilog design of 2nd Twiddle Factor Multiplication stage

module mult2(ar,ai,outmr,outmi,clock,clckm,clck,mcntrl,sltm,sltn,selectm2,reset);

input [31:0]ar,ai;

input [2:0]selectm2;

input clock,clckm,clck,mcntrl,reset;

output [31:0]outmr,outmi;

input sltm,sltn;

wire [31:0]c,d,in1,in2;

reg [31:0] w80r=32'h3f800000,w80c=32'h00000000, w81r=32'h3f800000, w81c=32'h00000000,

 w82r=32'h3f800000, w82c=32'h00000000,

 w83r=32'h00000000, w83c=32'hbf800000,

52

 w84r=32'h3f800000, w84c=32'h00000000,

 w85r=32'h3f800000, w85c=32'h00000000,

 w86r=32'h3f800000, w86c=32'h00000000,

 w87r=32'h00000000, w87c=32'hbf800000;

wire [31:0]prod,m1,m2,sb1,outar,outai;

spmult sr2(prod,in1,in2);

 assign

c[31:0]=(selectm2==3'b000)?w80r:(selectm2==3'b001)?w81r:(selectm2==3'b010)?w82r:(selectm

2==3'b011)?w83r:(selectm2==3'b100)?w84r:(selectm2==3'b101)?w85r:(selectm2==3'b110)?w86

r:(selectm2==3'b111)?w87r:32'h00000000;

 assign

d[31:0]=(selectm2==3'b000)?w80c:(selectm2==3'b001)?w81c:(selectm2==3'b010)?w82c:(select

m2==3'b011)?w83c:(selectm2==3'b100)?w84c:(selectm2==3'b101)?w85c:(selectm2==3'b110)?

w86c:(selectm2==3'b111)?w87c:32'h00000000;

 assign in1[31:0]=(sltm==1'b0)?ar[31:0]:ai[31:0];

 assign in2[31:0]=(sltn==1'b0)?c[31:0]:d[31:0];

D_flpflop min1(prod,m1,clck,reset);

D_flpflop min2(m1,m2,clck,reset);

subadd s2s(sb1,m2,m1,mcntrl);

D_flpflop dl2(sb1,outmi,clckm,reset);

D_flpflop d22(outmi,outmr,clckm,reset);

endmodule

A-8) Verilog design of complete FFT (Top Level Design):

//toplevel that has all the 5 pipelined stages

//Top level Module that combines all the blocks

module

toplvl(ar,ai,outr,outi,clock,clckm,clck,select,reset,cntrl,swap1,swap2,swap3,mcntrl,selectm,select

m2,sltm,sltn,or1,oi1,orm1,oim1,or2,oi2,orm2,oim2,prod,m1,m2,sb1);

input [31:0]ar,ai; //input ports

output [31:0]outr,outi; //outports

input clock,clck,clckm;

input select,reset,cntrl,mcntrl,sltm,sltn; //control lines of all the stages

input [2:0]selectm,selectm2; //twidle factor selection line for multiplication

input swap1,swap2,swap3; //selection lines of each mux 1,2,3 (logic table desired)

inout [31:0]or1,oi1,orm1,oim1,or2,oi2,orm2,oim2,prod,m1,m2,sb1; //intermediate outputs at each

stage joined by wire

//instantiation of stages

firstmux mx1(ar,ai,or1,oi1,select,swap1,reset,cntrl,clock,clck);

//first twidle factor multiplication unit

mult1 ma1(or1,oi1,orm1,oim1,clock,clckm,clck,mcntrl,sltm,sltn,selectm,reset,prod,m1,m2,sb1);

//second mux unit

secondmux mux2(orm1,oim1,or2,oi2,select,swap2,reset,cntrl,clock,clck);

53

//second stage twidle factor multiplication

mult2 ma2(or2,oi2,orm2,oim2,clock,clckm,clck,mcntrl,sltm,sltn,selectm2,reset);

//final mux unit

thirdmux mux3(orm2,oim2,outr,outi,select,swap3,reset,cntrl,clock,clck);

endmodule

A-9) C-Program for Generating 500 Random Vectors as Inputs to Design.

//C-program for generating 500 random inputs to the design

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i, n;

 time_t t;

 n = 500;

 /* Intializes random number generator */

 srand((unsigned) time(&t));

 /* Print all the random numbers in the given range in hexadecimal format */

 for(i = 0 ; i < n ; i++) {

 printf("#8 ar= %08x;\n", rand() % 99999999999);

 printf(" ai=%08x;\n", rand() % 8888888888);

 }

 return(0);

}

VITA

Sai Kiran, Sunkari

Candidate for the Degree of

Master of Science

Thesis: LOW POWER SYNCHRONOUS DESIGN OF HARDWARE ARCHITECTURE

FOR IEEE 754 SINGLE PRECISION FLOATING POINT FAST FOURIER

TRANSFORM

Major Field: Electrical & Computer Engineering

Biographical:

Education: Received Bachelor of Technology Degree in Electronics &

Communication Engineering from Jawaharlal Technological University-

Anantapur, Andhra in April 2013. Completed the requirements for the

Master of Science in Electrical Engineering at Oklahoma State

University, Stillwater, Oklahoma in December, 2015.

Experience: Employed by Oklahoma State University, Department of Electrical

and Computer Engineering as Lab Teaching Assistant in spring 2015.

